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Abstract

Accurate electricity price forecasting is of great importance for risk–analysis

and decision–making in electricity market. However, because of characteristics of

randomness and non-linearity associated with the electricity price series, it is difficult

to build a precise forecasting model. If the electricity market price can be predicted

properly, the generation companies and the load service entities as the main market

participating entities can reduce their risks and maximize their outcomes further. In

this work, an adaptive longterm electricity price forecasting modelling using Monte

Carlo simulation is proposed. The applicability of the prediction performance of the

method is demonstrated for the case of electricity prices and oil prices prediction,

for different forecasting periods. The latter (oil prices prediction) is an external

factor for electricity price forecasting and becomes very important in power systems

running on oil derivatives. The proposed method can be useful for long term studies,

evaluating the risk for financing since proper electricity price forecast can help to

build up cost effective risk management plans for the participating companies in the

electricity market and, thus, to receive appropriate financing.
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1 Introduction

More than 30 years have passed since the publication of the work on electricity market

restructuring [1], more than 25 years–since the United Kingdom (UK) began to design

its innovative and comprehensive program on privatization, restructuring for competi-

tion and regulatory reform in the electricty sector. Gradually, more and more other

countries, as well as, European Union (EU) member states have followed the UK’s lead

and introduced comprehensive electricity sector reform programs. Other countries have

introduced less comprehensive and consistent reform programs, however, still the main

principles of electricity market opening have been followed.

Electricity price play a key role in the economy sector of all countries. Moreover, since

during the last few decades, the traditionally monopolistic and government–controlled

electricity market has been transformed to deregulated and competitive market system

in many countries, the role of electricity price in balancing electricity generation and

consumption becomes more important. In such deregulated and competitive market

environment, electricity can be freely traded under the market environment like other

ordinary commodities, so the electricity price which can reflect the relationship between

supply and demand of electricity becomes one of the most important elements in the

electricity market.

Consequently, the decision makings of all electricity market participants are highly

dependent on the electricity price, making modeling electricity prices become one of

the cornerstones of research into the energy markets. For instance, the electricity price

forecasting is very useful for electricity generators, retailers and consumers to deter-

mine their offering and bidding strategies. Thus, accurate electricity price forecasting

is essential and significant for the whole electricity power system and market. Simulta-

neously, because the electricity demand highly depends on many factors including high

frequency, non–constant mean and variance (non–stationary series), multiple seasonality
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(corresponding to a daily and weekly periodicity, respectively), calendar effect (such as

weekends and holidays), high volatility and high percentage of unusual prices (mainly

in periods of high demand) due to unexpected or uncontrolled events in the electricity

markets, weather, intensity of business and daily activities, special characteristics such

as randomness, non–stationarity and non–linearity, which makes the electricity price

frequently fluctuate. Therefore, it is far from easy to predict electricity price with high

accuracy.

Proper electricity price forecast can help to build up cost effective risk management

plans for the participating companies in the electricity market and, most importantly, to

receive appropriate financing. If the electricity market price can be predicted properly,

the generation companies and the load service entities as the main market participating

entities can reduce their risks and maximize their outcomes further [7].

The selection of the best forecasting technique depends on factors such as product

(spot price, forward price), term (day to day, month to month, year to year), market

design (single, multiple settlement system). In addition, electricity price is driven by

external factors, e.g., wind and solar or electricity demand or fuel cost (e.g., oil or

natural gas or coal price). The latter (fuel cost) becomes very important in power

systems running on oil derivatives.

In this work, an adaptive longterm electricity price forecasting modelling using Monte

Carlo simulation is proposed. The applicability of the prediction performance of the

method is demonstrated for the case of electricity prices and oil prices prediction, for

different forecasting periods.

The rest of this paper is organized as follows. Section 2 provides a cosine literature

review of recent modeling for electricity price forecasting. Section 3 describes in detail

the methodology adopted in this work. Section 4 presents a discussion of the results

obtained. Section 5 is the concluding remarks.
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2 Electricity price forecasting modeling

In the recent decades modeling electricity prices have become a complex and broad field

of research. Due to the liberalization of markets and increasing disclosure of data, new

insights concerning the structure and behavior of the prices were gained. There are

typical characteristics of electricity prices regardless where it has been traded and these

are summarized in [2]. One of these characteristics concerns tremendous deviations of

the price pattern from its mean, called price spikes. This specific feature of electricity

prices has huge impacts for research, as well, as energy policies and companies. Many

electricity companies, e.g., in Germany, are obliged to market some of their electricity

at an exchange, which makes their earnings prone to heavy price spikes and creates a

complex task for their risk management department. Moreover, many financial con-

tracts such as futures or options are dependent on the variance of the price process

and therefore demand eligible estimation techniques. Also, long–term cost calculation

for investment projects or energy strategy programs like the development of renewable

energy are dependent on stable and reliable methods for calculation of electricity prices,

which can account for the likelihood of price spikes. Therefore, a great variety of models

for estimating the electricity price occurred during the past decades. Those models are

often related to well–known models of the finance literature but can originate from many

other fields of research [3].

The electricity price of exchanges is the result of competitive bidding and offering.

Focusing merely on the time series of prices, therefore, neglects their true source. If

the true sale and purchase curves were known, the price could be solely determined by

the intersection of both curves, regardless of any time dependencies between different

prices. In addition, electricity price is driven by external factors [4], e.g., wind and

solar or electricity demand or fuel cost (e.g., oil or natural gas or coal price). However,

taking a closer look on the underlying price process, it can be stated that it is the buyers
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and sellers on an electricity exchange who are influenced by those factors and therefore

adjust their bids [5]. Reasons for that can be, e.g., that these market participants

are electricity companies who are facing heavy overproduction of electricity due to an

unexpected change in wind speed or temperature or an underproduction due to outages

of power plants.

But those market participants are not equal, they can be investment companies,

electricity producers or transmission service operators, among others. Also, not all elec-

tricity producers are equal, they have distinct production portfolios and are, therefore,

more or less likely prone to, e.g., heavy weather conditions. An unexpected shift in wind

production levels for instance can, therefore, lead to a little or vast change in prices,

dependent on if the equilibrium price of the market was already mainly driven by wind

producers. This diversified information is summarized in the sale and purchase curve

of electricity prices [3]. Hence, especially for estimating heavy price movements it is

essential to know, if the market is capable of adjusting for external shocks easily or if a

tremendous price spike will occur [6]. This sensitivity of the intersection price can, there-

fore, be obtained by analyzing the original price curves instead of only their outcome as

price time series.

Electricity price models can be divided into three different groups, such as, multi–

agent models, fundamental models and time series forecasting models. Multi–agent mod-

els usually focus on the supply and demand of electricity to obtain prices by equilibrium,

optimization or simulation [7], [8], but hence often do not incorporate the time–series

of electricity bids and asks of a real exchange into their approaches. Fundamental ap-

proaches cover a great variety of models but mainly emphasize the basic economic and

physical relationships of the market [9].

The most frequently used approaches for electricity price forecasting are based on

time series forecasting models which are focus on the price itself or related time series

forecasting methods like renewable energy or electricity demand or fuel price. Series

5



forecasting methods can be divided into statistical models, artificial intelligence (AI)

models and hybrid models [10]. In the first category, the widely applied models mainly

include auto–regressive moving average (ARMA), auto–regressive integrated moving av-

erage (ARIMA), vector auto–regression (VAR), generalized autoregressive conditional

heteroskedasticity (GARCH) and kalman filters methods. For example in [11], the

tourism demand based on ARMA models is forecasted and the results showed that

the models perform very well. In [12], the ARIMA model is employed to forecast con-

sumer retail sales, and the results demonstrated that the model performs well in both

one–step and multi–step forecasting. Also, a VAR model is used in [13] in order to

predict the inflation and marginal cost of the United States of America. Forecasting of

carbon futures volatility based on GARCH model is investigated in [14] and the results

demonstrated that the model performs with good accuracy. Finally, in [15] an ensem-

ble Kalman filter method for electricity load forecasting is proposed and the simulation

results indicated that the forecast accuracy of the model is obviously better than the

present state–of–the–art models.

In the second category, a great number of AI methods have been used in different

forecasting fields during the past years, such as artificial neural network (ANN), extreme

learning machine (ELM), support vector machine (SVM) and least squares support vec-

tor machine (LSSVM). For instance, in [16] a day–ahead electricity price forecasting

through application of ANN models was investigated and the results showed that ANN

topologies can be further examined. The application of ANN in global solar irradiance

(GSI) short–term forecasting was investigated in [17] and the results of the study in-

dicated that ANN models are suitable for predicting short–term GSI. In [18] a novel

model based on ELM for electricity load demand forecasting was developed and the

results proved the high performance of the proposed model. A modified SVM model for

short–term wind speed forecasting was proposed in [19] with the experiments showing

that the model can outperform in the majority of cases compared to other models. In
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[20] a weighted LSSVM predicting model based on a learning system for time series

forecasting is developed with the results testifying the validity of the proposed model.

However, the traditional time series forecasting models applied on the original data

series cannot precisely expose the complicated relations existed in the non–linear and

non–stationary data series. Therefore, many researchers have been making efforts to

handle the non–linearity and non–stationarity existed in the data series using differ-

ent data decomposition techniques before forecasting. For example, in [21] a hybrid

model based on wavelet packet transform (WPT) phase space reconstruction (PSR) and

LSSVM for wind speed forecasting is developed demonstrating that the WPT decom-

position technique makes great contribution on the forecast accuracy. In [22] a similar

forecasting method based on the WPT decomposition technique proposed in [21] was

investigated. The results based on two wind speed series collected from a wind power

observation station located in the Netherlands demonstrated that the proposed hybrid

model outperforms other benchmark models.

Also, in [23] similar forecasting issues with [21] were investigated and a hybrid model

based on wavelet transform (WT) and SVM optimized by genetic algorithm (GA) was

developed. A bivariate EMD–based SVM model for interval–valued electricity demand

forecasting was developed in [24] and the results demonstrated that the proposed model

is a promising method. Finally, in [25] the advantages of single decomposition techniques

were combined in a hybrid model based on two–layer decomposition technique and BP

neural network, optimized by FA for multi–step ahead electricity price forecasting. The

model was tested using three electricity price data series collected respectively from the

real–world electricity markets of Australia and France.
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3 Forecasting model

Electricity prices exhibit jumps in prices at periods of high demand when additional,

less efficient electricity generation methods are brought on–line to provide a sufficient

supply of electricity. In addition, for long term forecasting they daily electricity prices

have a prominent seasonal component, along with regression to mean levels. Therefore,

these characteristics should be incorporated into a model for a long term electricity price

forecasting.

In this work, electricity price is modeled as [26]:

log(Pt) = f(t) +Xt, (1)

where Pt is the spot price of electricity in US$/MWh. The logarithm of electricity price

is modeled with two components: (a) f(t) and (b) Xt. The component f(t) is the

deterministic seasonal part of the model, and Xt is the stochastic part of the model.

Trigonometric functions are used to model f(t) as follows:

f(t) = s1 sin(2πt) + s2 cos(2πt) + s3 sin(4πt) + s4 cos(4πt) + s5, (2)

where si, i = 1, 2, ..., 5 are constant parameters, and t is the annualized time factors. The

stochastic component Xt is modeled as an Ornstein-Uhlenbeck process (mean-reverting)

with jumps:

dXt = (α− κXt)dt+ σdWt + J(µj , σj)dΠ(λ). (3)

The parameters α and κ are the mean–reversion parameters. Parameter σ is the volatil-

ity, and Wt is a standard Brownian motion. The jump size is J(µj , σj), with normally

distributed mean µj and standard deviation σj . The Poisson process Π(λ) has a jump

intensity of λ.

Historic daily electricity prices are used as an input data containing the electricity
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prices and price date. The logarithm of the prices and annual time factors are then

calculated.

First, the deterministic seasonality part is calibrated using the least squares method.

Since the seasonality function is linear with respect to the parameters si, the backslash

operator is used. After the calibration, the seasonality is removed from the logarithm of

price. The second stage is to calibrate the stochastic part. The model for Xt needs to

be discretized in order to conduct the calibration. To discretize, we assume a Bernoulli

process for the jump events. That is, there is at most one jump per day since we are

calibrating against daily electricity prices.

The discretized equation is:

Xt = α∆t+ ϕXt−1 + σξ, (4)

with probability (1− λ∆t) and

Xt = α∆t+ ϕXt−1 + σξ + µj + σjξj , (5)

with probability λ∆t, where ξ and ξj are independent standard normal random variables,

and ϕ = 1− κ∆t. The density function of Xt given Xt−1 is:

f(Xt|Xt−1) = (λ∆t)N1(Xt|Xt−1) + (1− λ∆t)N2(Xt|Xt−1), (6)

N1(Xt|Xt−1) =
[
2π(σ2 + σ2

j )
]− 1

2 e

[
−(Xt−α∆t−ϕXt−1−µj)

2

2(σ2+σ2
j
)

]
, (7)

N2(Xt|Xt−1) = (2πσ2)−
1
2 e

[
−(Xt−α∆t−ϕXt−1)

2

2σ2

]
. (8)

The parameters θ = {α, ϕ, µj , σ
2, σ2

j , λ} can be calibrated by minimising the negative

log likehood function:

min θ −
T∑
t=1

log [f(Xt|Xt−1)] , (9)
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subject to:

ϕ < 1, (10)

σ2 > 0, (11)

σ2
j > 0, (12)

0 ≤ λ∆t ≤ 1. (13)

The first inequality constraint, ϕ < 1, is equivalent to κ > 0. The volatilities σ and σj

must be positive. In the last inequality, λ∆t is between 0 and 1, because it represents

the probability of a jump occurring in time. If we take ∆t to be one day, consequently,

there is at most 365 jumps in one year.

The calibrated parameters and the discretized model allow us to simulate electricity

prices under the real–world probability using Monte Carlo simulation. The simulation

is conducted for a specified number of years with 10,000 trials. Finally, the seasonality

is added back on the simulated paths.

4 Forecasting results

In this paper, two cases are examined to illustrate the prediction performance of the

proposed method. In case 1 the proposed method is applied to predict electricity prices

and in case 2 the proposed method is tested for oil price forecasting. The latter, as

explained before, is an external factor for electricity price forecasting and becomes very

important in power systems running on oil derivatives. For both cases a historic data

for the period 1999-2017 was obtained from [27] as illustrated in Figure 1 and in Figure

2. In particular for case 1, the average electricity price for the period 1999–2017 is

49.18 US$/MWh with a maximum price of 288.83US$/MWh and a minimum price of

14.41US$/MWh. Analysis of case 2 historic data, for the period 1999–2017, the average
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oil price is 68.72 US$/bbl with a maximum price of 143.95 US$/bbl and a minimum

price of 9.77 US$/bbl.

In order to demonstrate the applicability of the method for each case forecasting

horizons of 2 years, 5 years and 10 years are selected. Also, the convergence of the

model is examined for different number of trials. In particular, the convergence of the

method for case 1 with a forecasted horizon of 2 years is illustrated in Figure 3. We

observe that the average forecasted electricity price for the 2 years horizon is around

38US$/MWh for all number of trials investigated, justifying the stability and precision

of the model.

The simulation results regarding case 1 (prediction of electricity prices) are presented

in Figure 4, Figure 5 and Figure 6. It is evident that for all periods examined the pre-

dicted electricity prices follow the behaviour of the historic data used. More specifically,

for a 2 years forecasting horizon the average price is 38.04 US$/MWh compared to the

historic average of 49.18 US$/MWh. Also, for the periods of 5 years and 10 years the

associated predicted average electricity prices are 36.90 US$/MWh and 34.97 US$/MWh

respectively. A summary of the results is tabulated in Table 1 including the forecasted

minimum and maximum electricity prices for each period.

The simulation results regarding case 2 (prediction of oil prices) are presented in

Figure 7, Figure 8 and Figure 9. As before, it is evident that for all periods examined

the predicted oil prices follow the behaviour of the historic data used. In this case, for a

2 years forecasting horizon the average price is 112.36 US$/bbl compared to the historic

average of 68.72 US$/bbl. Also, for the periods of 5 years and 10 years the associated

predicted average oil prices are 123.72 US$/bbl and 145.35 US$/bbl respectively. A

summary of the results is tabulated in Table 2 including the forecasted minimum and

maximum oil prices for each period.
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5 Conclusions

Accurate electricity price forecasting is of great importance for risk–analysis and decision–

making in electricity market. However, because of characteristics of randomness and

non-linearity associated with the electricity price series, it is difficult to build a precise

forecasting model. If the electricity market price can be predicted properly, the gener-

ation companies and the load service entities as the main market participating entities

can reduce their risks and maximize their outcomes further.

In this work an adaptive longterm electricity price forecasting modelling using Monte

Carlo simulation was proposed. The applicability of the prediction performance of the

method was demonstrated for the case of electricity prices and oil prices prediction,

for different forecasting periods. The latter (oil prices prediction) is an external factor

for electricity price forecasting and becomes very important in power systems running

on oil derivatives. The proposed method can be useful for long term studies and for

evaluating the risk for financing since proper electricity price forecast can help to build

up cost effective risk management plans for the participating companies in the electricity

market and, thus, to receive appropriate financing.
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Table 1: Forecasted electricity price.

Forecasted horizon Average price Maximum price Minimum price
(US$/MWh) (US$/MWh) (US$/MWh)

2 years 38.04 70.70 14.52
5 years 36.90 84.41 15.13

10 years 34.97 81.99 16.43
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Table 2: Forecasted oil price.

Forecasted horizon Average price Maximum price Minimum price
(US$/bbl) (US$/bbl) (US$/bbl)

2 years 112.36 183.24 58.74
5 years 123.72 221.30 48.49

10 years 145.35 312.87 58.74
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Figure 1: Historic electricity prices.
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Figure 2: Historic oil prices.
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Figure 3: Convergence of the method.
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Figure 4: Results for 2 years forecasting of electricity prices.
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Figure 5: Results for 5 years forecasting of electricity prices.
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Figure 6: Results for 10 years forecasting of electricity prices.
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Figure 7: Results for 2 years forecasting of electricity prices.
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Figure 8: Results for 5 years forecasting of electricity prices.
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Figure 9: Results for 10 years forecasting of electricity prices.
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