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Abstract

This paper presents a method for designing a multi-machine power system stabilizer. The conventional design technique using
a single machine infinite bus approximation involves a frequency response estimation called GEP(s). Frequency response
is estimated between the input AVR and electrical output torque. The power system stabilizer is designed by frequency
response and based on the root locus method to improve the damping of oscillatory modes. By using this method, we can
adjust the structure of the PSS compensator and its parameters in the multi-machine system and it does not need to know
the equivalent reactance of output and voltage of the infinite bus or the other estimations in every machine. In the proposed
method, information available at the high voltage bus of the step-up transformer is used to set up a modified Heffron-Phillips
model. Finally, this method is examined on three test systems. Simulation results indicate the performance and effectiveness
of the proposed method.

Keywords: Four-leg Shunt Active Power Filter (4LSAPF); Enhanced Phase Locked Loop (EPLL); Self Tuning Filter (STF);
Fuzzy Logic Control (FLC); Harmonics; Reactive power.

1. Introduction

When several generators are connected together, their inter-
actions can cause disturbances in the performance of con-
trol systems. Therefore, proportional adjustment between
generators in control systems is very useful [1, 2]. A gen-
erator swinging against the rest of the system causes local
mode oscillations and, in interarea mode oscillations, groups
of generators swinging against each other. These oscilla-
tions exist continuously in the system, but if the variation of
load and generation rate causes the location of oscillating
systems modes to change, moving them toward the right of
the imaginary axis, then the system will be unstable [3, 4].
Therefore, it is necessary to increase the amount of damp-
ing of the oscillating modes [5, 6].

So, a control system called a power system stabilizer is
used that add extra damping to the excitation system. Power
system stabilizers are built to help damp these oscillations
on the excitation system [7, 8]. This equipment provides
additional damping to the system through lead compensa-
tion, which is caused between the input speed and output
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Figure 1: Power oscillation damping strategies

torque. Several methods have been used to design stabiliz-
ers [9, 10].

With the advent of power electronics and the production of
equipment with high current and voltage, the usage of flex-
ible alternating current transmission (FACTS) has become
economically justified. Conventional PSS could not provide
appropriate damping for interarea oscillations, so a combina-
tion of PSS and FACTS is used to provide optimal damping.
In other words, the use of PSSs alone may not be effec-
tive in some cases in providing sufficient damping for power
oscillations, specifically for long distance power transmis-
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sion [11, 12]. The concept of FACTS became feasible due
to the application of high-power electronic devices for power
flow, voltage control, and additionally enhancing the damp-
ing of power oscillations [13]. In the literature several re-
searchers propose the coordination of PSS with FATCS con-
trollers to enhance the dynamic performance of the power
system. In [14], the authors discussed a global tuning pro-
cedure for PSS and FACTS devices using a parameter-
constrained nonlinear optimization algorithm. A robust coor-
dinated design of a PSS and TCSC based stabilizer is thor-
oughly investigated in [15]. Generally, there are two kinds of
power oscillation damping controllers in power systems, as
shown in Fig. 1: PSS and FACTS controllers.

The main goal of most studies in recent years is the adjust-
ment of a secondary control system for the excitation system
in order to stabilize the oscillating modes. PSS is not usually
installed in all generators, but is only installed in the genera-
tors that can cause the maximum amount of damping in the
system and the oscillatory modes [16, 17]. The structure of
PSS commonly includes a washout filter and a lead-lag block
diagram. The PSS input signals can include terminal voltage,
rotor speed deviation and electrical power [18, 19]. In previ-
ous studies a linear combination of these signals is used as
an input signal. The stabilizer is adjusted for lag compensa-
tion which is created between the generator, excitation sys-
tem and power system [20]. Typical stabilizers are divided
into two categories: analog and digital. In this study, we dis-
cuss only analog PSS. Analog PSS parameters are adjusted
by using linear and nonlinear methods. In previous studies
several methods were proposed based on linear methods in
order to design PSS, including pole placement, pole shifting,
optimal linear control, eigenvalues sensitivity analysis and
characteristic method. In recent studies, the proposed meth-
ods are typically used for single-machine infinite-bus power
systems.

This paper presents an approach to adjust the param-
eters of multi-machine power system stabilizers based on
the root locus method and frequency response of the sys-
tem. Adjustment of PSS parameters requires accuracy and
good knowledge of the structure and dynamic model of the
system. Therefore, accurate modeling of the power system
has to be done before the desired design of PSS can be
achieved.

2. Proposed Method

The flowchart of the proposed method is shown in Fig. 2.
The transfer function which will be described below is ob-
tained for all the system generators in which PSS will be in-
stalled. Finally, the parameters of the power system stabilizer
are adjusted by using the root locus method and frequency
response of the system. The PSS parameters are obtained
for an operation point and operating conditions of the sys-
tem. Therefore, several different scenarios of loading in the
system are considered and parameters are adjusted for the
worst loading conditions so that the system can respond to
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3. Power System Model 

Small-signal stability analysis requires dyna-
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chronous generator, excitation system, autom-
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constant model. 
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In Fig. 4, constants of linearize model dep-

end on the machine parameters and operating 

conditions of the system [25,26]. 
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Figure 3: Single machine in a connected network

disturbances in the various operating conditions of the sys-
tem.

3. Power System Model

Small-signal stability analysis requires dynamic modeling
of the major components of the power system. These main
components are: synchronous generator, excitation system,
automatic voltage regulators and other components [21].
The model shown in Fig. 3 is used to obtain the linearized
Heffron-Phillips or K-constant model.

In order to analyze small signal stability, it is necessary to
consider the effect of the excitation system, which indirectly
controls the reactive power output of the generator [22]. The
linearized dynamic equations of single machine infinite bus
(SMIB) are as follows [23, 24]:
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Figure 4: Linearized model of ith synchronous machine
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In Fig. 4, the constants of the linearized model depend
on the machine parameters and operating conditions of the
system [25, 26].

4. Power System Stabilizer (PSS) design

Due to the continual variation of dynamic system condi-
tions, the operation point of the system and the load and
generation levels change constantly, causing low-frequency
oscillations in the system. Hence, PSS is designed and ad-
justed to add suitable damping to the system so that low-
frequency oscillations do not cause small-signal instability.
PSS is an additional control block that is added to improve
system stability [27].

4.1. Design based on the general structure of the Power
System Stabilizer

The main structure of the power system stabilizer is shown
in Fig. 5. The transfer function GE(s) , shown in Fig. 6, was
affected by assuming that variation of machine speed is zero.

It is given by Shahgholian et al. [28]:

GE(s) =
K2K3E(s)

(1 + sT ′d0K3) + K3K6E(s)
(5)

where E(s) is the transfer function of the excitation system.
According to (5), for every machine in the multi-machine sys-
tem, GE(s) can be calculated based on the power flow data

Figure 5: The PSS Structure

Figure 6: Electrical transfer function in single-machine infinite-bus power
system

in the transformer bus and initial condition of the generator.
The compensator structure that is required for the resonant
or non-resonant form of GE(s) is given in (6) and (7).

H(s) = Kpss
sTω

1 + sTω

( 1
ω2

n
s2 +

2ζ
ωn

s + 1)

(1 + sT1)(1 + sT2)
(6)

H(s) = Kpss
sTω

1 + sTω
(
1 + sT1

1 + sT2
)m (7)

In (7), m is the number of lead-lag stages. After plotting the
frequency response of the transfer function GE(s) for every
generator, if it is without resonance peak, we can use the
procedure of Fig. 7.

4.1.1. Selection of stabilizer time constants
At first fc and β are adjusted so that compensated phase

of GE(s) at the frequency of the local mode (7 rad/sec) is
less than 50 degrees and intersection at 90 degrees occurs
above 22 rad/sec (3.5 Hz). Phase margin of higher than 30◦

is suitable for compensated GE(s). Here fc is the central
frequency of the compensator. The equations to obtain con-
stants T1 and T2 are given in [29].

4.1.2. Plotting the root locus
Plot the root locus of the plant with compensator from

A and matrices with slip speed as output. Now look for the
departure of root locus branch at the modes near the imag-
inary axis. If it is not in the increasing damping direction
adjust the zero of the compensator.

4.1.3. Gain Selection of compensator
The gain from the root locus plot is selected so that the

damping ratio of rotor mode is maximized.
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In (7), m is the number of lead-lag stages. 
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Fig. 7. Design procedure of stabilizer for GE(s) without 
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4.1.2. Plotting the root locus  

Plot the root locus of the plant with 

compensator from A and matrices with slip 

speed as output. Now look for the departure of 

root locus branch at the modes near the 

imaginary axis. If it is not in the increasing 

damping direction adjust the zero of the 

compensator.  

Figure 7: Design procedure of stabilizer for GE(s) without resonant

4.2. Power system stabilizer design for GE(s) with resonance
peak

This condition occurs when the matrix has two pairs of
complex eigenvalues with significant damping. In this case
the proposed procedure in Fig. 8 is used to adjust the pa-
rameters of the power system stabilizer.

4.2.1. Restricting the complex pair of poles by zeros of com-
pensator

The first step is to decide the complex pair of poles to be
constrained by zeros. In order to determine the dominant
pole of the system, a set of matrices is created as the trans-
former reactance is increased. The eigenvalues of this ma-
trix are plotted. A pair of eigenvalues that are oriented to-
ward the positive axis should be chosen as a pair that must
be restricted by a zero pair.

4.2.2. Finding values of ξ and ωn

This step is to find values of ξ and ωn of the second order
transfer function; these values are significantly in accordance
with the phase characteristic of GE(s). Now fix one of the
poles say T1 at 0.01 and adjust T2 andωn of the numerator so
that the compensated GEP has good phase margin (about
40 degrees).

4.2.3. Plotting the root locus and evaluation of branch devi-
ation of root locus

After plotting the locus, the locus branch is checked to en-
sure it passes across the required complex pole. Otherwise,
T2 and ωn are adjusted based on that. Moreover, the locus
branch of the other complex poles must be far enough from
the location of the complex zeros.
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The algorithm for designing this controller is 

given in the following section.  

a) Pole of PI controller is set at zero value 

and value of zero is considered arbitrarily in a 

small amount close to the origin, for example 

Zc=0.01 or Zc=0.1.  

Figure 8: Procedure of stabilizer design for GE(s) with resonance

4.3. Using the PI controller for power system stabilizer de-
sign

In this study, the PI controller is used instead of the lead-
lag controller in the power system stabilizer block. PI con-
troller transfer function is indicated by GE(s) and is as per
(9):

Gc(s) = Kp + Ki
1
s

=
Kps + Ki

s
(8)

By rewriting (8), the PI controller transfer function can be
obtained as (9):

Gc(s) = Kp

s + Ki
Kp

s
, Ki ≤ Kp (9)

Where KP is the static gain and Ki/Kp indicate a stable
zero that is close to the origin.

Gc(s) =
s + zc

s
(10)

The algorithm for designing this controller is given in the
following section.

• Pole of PI controller is set at zero value and the value of
zero is considered arbitrarily in a small amount close to
the origin, for example Zc=0.01 or Zc=0.1.

• If necessary, the static loop gain KP is set at a value ex-
cept one so that the desired value of steady error com-
pensation is achieved.

Generally, PI controller design is an experimental procedure
that is based on trial and error in order to achieve the desired
phase margin.
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b) If necessary, the static loop gain KP is set 
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5. Case Studies and Simulation Results

The proposed method was implemented in three systems:
3, 5, 10 machines and the results analyzed. First, small-
signal stability analysis is done without PSS. Then, PSS is
adjusted and small-signal stability is checked again to ob-
serve the adjustment effect. Finally, several different loading
scenarios are evaluated in order to evaluate the effective-
ness of PSS adjustment. Finally the results of the lead-lag
controller are compared with the results of the PI controller

5.1. Three-Generator Nine-Bus Power System

This system is the first case study that is used to evalu-
ate power system oscillations and the implementation of the
proposed method for stabilizer design. This system is taken
from [30]. This is the most widely used test system for vali-
dating several control designs (Fig. 9). In this study the ex-
citer is considered as a first order block diagram, with a gain
and time constant of 200 and 0.05. Frequency response

Table 1: Eigenvalues, frequency, and damping ratio
Damping Frequency (Hz) Eigenvalues

-1 0 0.0058
Instable

0.0359 1.366 -0.308+j8.857
Marginally stable

0.0359 1.366 -0.308-j8.857
Marginally stable

Table 2: Eigenvalues of Three-generator system for each generator
Eigenvalue

G1 0.0500±j7.4200 , -10.0100±j11.8900
G2 -1.3430±j11.0500 , -9.4191±j4.4815
G3 -1.7000±j14.8000 , -15.1, -4.3

estimation and calculating the coefficients of the Heffron-
Phillips model require data obtained with power flow. PST
Toolbox of MATLAB is used for small signal stability analy-
sis. Modal analysis is used to evaluate small-signal stability
without PSS. Damping factors of eigenvalues are shown in
Fig. 10. In this paper the minimum damping factor criterion
is considered 0.05. As can be seen from Fig. 3, there is
an unstable eigenvalue which indicates the instability of the
system. In addition, two pairs of eigenvalues are less than
0.1; these eigenvalues are known as the critical eigenvalues.
Table 5.1 shows these eigenvalues, the frequency, and their
damping factors.

Eigenvalues, un-damped frequencies and the damping ra-
tio of each generator are shown in Tables 5.1 and 5.1 by
considering the high voltage bus of the step-up transformer
as a slack bus and linearization state equations.

The results of the small-signal stability analysis are used
to determine that this system has unstable eigenvalues. The
frequency responses of generators are given in (11) to (13)
and Fig. 11.

GE(s) =
152

17.67 + 3.26s + 0.04905s2 (11)

GE(s) =
193.43

0.057s2 + 1.1912s + 14.047
(12)

GE(s) =
221

0.06s2 + 1.2362s + 10.83
(13)

None of the frequency responses of the generators of
three machines have resonance peak. In this case, gener-
ator 3 has the most steady-state stability due to its greatest
gain. But from the point of time constant, all generators have
poles that are close together in approximate terms; so the
delays of the three generators are in approximately the same
interval.

For the first generator, the phase margin is 22 degrees and
the gain margin is infinite; so 30 degrees should be added by

Table 3: Un-damped frequencies and damping ratio
ζ0 ωn

G1 -0.00673 7.43
G2 0.1207 11.1310
G3 0.1141 14.8963
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Figure 11: GE(s) of three-generator nine-bus system

Figure 12: Root locus GEN-1, three-generator nine-bus system

the stabilizer. Therefore, β is considered 30 degrees. Based
on the proposed method, central frequency is also consid-
ered to be 3.5 Hz. In the next stage, the gain of PSS should
be calculated. In this study, the PSS gain is obtained from
the root-locus diagram and regards the desired amount of
the damping ratio (ξ=0.15). Finally, by addition of the pole
and zero of the stabilizer, the root-locus of generators 1, 2
and 3 are shown in Figs 12, 13, and 14. According to the re-
sults of the root locus, it can be observed that PSS increases
system damping, so that the refraction angle of roots which
are close to the imaginary axis is 180 degrees. Fig. 15 shows
the frequency response of generator 1 after applying the sta-
bilizer.

After applying the stabilizer, the suitable condition of the
problem is satisfied, i.e., the phase margin is about 40 de-
grees and the refraction angle occurred at 22 rad/sec with
a slope close to 180 degrees. Therefore, the designed com-
pensator will provide suitable damping in the system.

The effectiveness of the proposed PSS design is shown in
Figs. 16 and 17 with small disturbances, such as a 10% step
change in Vre f in GEN3.

To evaluate the performance of the designed compen-

Figure 13: Root locus GEN-2, three-generator nine-bus system

Figure 14: Root locus GEN-3, three-generator nine-bus system

sator, a three-phase short circuit is considered for the three
machines system. This fault happened at the first second
in bus 7 and after 100 ms it will be cleared. Figs. 18 and
19 show the impact of a three-phase short circuit fault be-
fore and after applying a stabilizer on the voltage of buses 7
and 8. The electrical power response of generator 3 for a 3φ
self-cleared is shown in Fig. 20. Fig. 21 shows transferred
power between bus 7 and bus 8 respectively after the three-
phase fault and after applying the stabilizer. The PSS data
are shown in Table 5.1 for the three machines system.

Table 4: PSS parameters 3 GEN 9 bus system
G β T1 T2 KPS S

1 30 0.0803 0.0257 49
2 35 0.08735 0.0236 5
3 37 0.15 0.01 3
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Figure 15: Frequency response of generator 1 after applying the stabilizer

Figure 16: Response variations of GEN-1 rotor angle to 10% step change
in Vref at GEN-3

5.2. Five-Generator Ten-bus System

This system is shown in Fig. 22 [31]. Due to the critical
eigenvalues of Table 5.2, it is observed that the system has
4 oscillating modes where its damping ratio is less than 2.0.
Figs 23 and 24 indicate frequency responses of generators
1, 2, 3, 4 and 5. Generators 2, 3 and 5 have the resonance
peak in their frequency responses.

In order to adjust the parameters of the stabilizer, the re-
actance of the transformer should be changed step by step
and complex eigenvalues of the matrix should be evaluated.
Figs. 25, 26, and 27 show the reactance changes of genera-
tors 2, 3 and 5.

Fig. 25 shows that as xt is increased, pole -1.250±j9.430
move in negative direction of real axis, and pole -1.935±
j5.760 move in positive direction of real axis. Consequently,
pole –1.935±j5.760 is the dominant pole and this pole should

Figure 17: Speed slip variations of GEN-1 due to 10% step change in Vre f
at GEN-3

Figure 18: Voltage of bus 7 for a 3φ self-cleared fault at bus 7; (a) without
PSS; (b) with PSS

Table 5: Eigenvalues, frequency, and damping ratio
eigenvalues Damping Stability Type
-0.30+j3.5 0.084 Marginally Stable
-0.06+j5.33 0.012 Marginally Stable
-0.38+j7.2 0.052 Marginally Stable
-0.8+j10.66 0.171 Marginally Stable

be restricted by complex zero of the compensator. Fig. 26
shows that -0.850±j10.750 is the dominant pole and this pole
should be restricted by complex zero of the compensator.
Fig. 27 shows that -2.256±4.835 is the dominant pole and
this pole should be restricted by complex zero of the com-
pensator. Here, a stabilizer is designed for generator 5 and
the complete procedure of design is studied. The algorithms
and design procedures of the other generators are the same
as for generator 5. In the first step it should be determined
how much of required phases margin is provided by transfer
function GE(s), then the rest of the required phase margin
should be compensated by the stabilizer. For this purpose,
the frequency response of generator 5 is plotted and the gain
margin is calculated. In Fig. 28 it can be observed that the
phase margin of this generator is about 9 degrees. For this
purpose, the parameters T1, T2, ωn and ξ should be adjusted
so that the required 40 degrees will be compensated. Hence,
as can be seen in Figs. 29 and 30, five different states are

Table 6: Specifications of stabilizer parameters for the design process
T1 T2 ωn ξ Phase margin

Case 1 0/01 0.01 7.7 0.4 9.35
Case 2 0.01 0.05 11 0.4 13.4
Case 3 0.01 0.08 15 0.5 21.9
Case 4 0.01 0.1 18 0.6 24.2
Case 5 0.01 0.17 22 0.4 39.4
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Figure 19: Voltage of bus 8 for a 3φ self-cleared fault at bus 7; (a) without
PSS; (b) with PSS.

Table 7: PSS parameters of the 5 machines system stabilizers
Num. G T1 T2
1 0.01 0.17
2 0.01 0.05
3 0.11 0.08
4 0.12 0.09
5 0.09 0.06

evaluated. Finally, in the fifth state, the system phase mar-
gin reaches 40 degrees. Data on the adjustment and phase
margin of each state are given in Table 5.2.

The PSS data are shown in Table 5.2 for the five machines
system.

Fig. 31 shows the roots locus of GEN-5 in the fifth state.
It is observed that the zeros are close to the complex poles
and compensated.

5.3. Ten-Generator 39 Bus System

This system is taken from Padiyar [32]. In this system,
PSS is modeled for all generators except generator number 2
that is modeled as the external network model (infinite bus).
In this system frequency responses of generators have no

Table 8: Characteristics of stabilizer parameters for the 10 machines system
G‘ TW T1 T2 KPS S
1 10 0.166 0.0677 66.4
3 10 0.163 0.0687 49
4 10 0.163 0.0688 60
5 10 0.163 0.0688 38.8
6 10 0.167 0.0672 70
7 10 0.158 0.0713 50.9
8 10 0.166 0.0678 41.9
9 10 0.165 0.0679 38.4

10 10 0.128 0.0876 29.1

Figure 20: Electrical power response of generator 3 for a 3φ self-cleared;
(a) without PSS; (b) with PSS

resonance peak. The characteristics of the designed stabi-
lizer parameters are given in Table 5.2. To evaluate the ef-
fectiveness of the obtained adjustment, different loading con-
ditions are examined in the system. Three scenarios of low
load, medium load and heavy load are considered for the
system load level.

In Fig. 32 slip speed of GEN-8 is considered at normal
and heavy load condition without PSS, by a 10% change in
mechanical torque. It is shown that slip speed of GEN-8 at
the normal condition starts to oscillate, but after a while it will
be damped. Now, slip speed response of GEN-8 to 10% step
in Tm is considered at heavy loading conditions with PSS.

Fig. 33 shows slip speed of this generator’s response to
a 10% step change in mechanical torque, at heavy condition
with and without the proposed PSS.

It can be seen that slip speed variations caused by a 10%
step change in mechanical torque are damped after a while
with the proposed PSS.

Under light loading condition, slip speed variation of GEN-
6 for a 10% step change in ∆Tm that occurred at second 5,
before and after applying the stabilizer is shown in Fig. 34.

The performance of the proposed PSS is shown in Fig. 34.
The slip speed variations of GEN-6 with PSS designed
based on the proposed method damps in a shorter time com-
pared to the situation without PSS.

6. Stabilizer design based on PI Controller for Three-
Machines Power System

PI controller is designed for the three generators of the
three machines system, and the results of the PI controller
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Figure 21: Transferred power between bus 7 and bus 8; (a) without PSS; (b)
with PSS
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parameters are given in Table 6 for the three machines sys-
tem. A three phase fault is implemented on bus 3. Fig. 35
shows slip speed responses of GEN-1 to GEN-3 for a 3φ
fault in the presence of the designed stabilizer based on the
general structure of the PSS. Fig. 36 shows the slip speed
responses of GEN-1 to GEN-3 for a 3φ fault in the presence
of the PI controller.

By comparing Figs. 34 and 35, it can be observed that the
PI controller partially improves system damping conditions,
but it cannot completely eliminate the low frequency oscilla-
tions. In fact, this type of controller has a major impact on the
steady-state behavior of the system and it improves steady-
state error. Thus, if the low-frequency oscillation is low and
oscillatory modes are local, using the PI controller can have
a desirable effect on system stability.

Figure 23: Frequency responses of generators 1, 4

Figure 24: Frequency responses of generators 2, 3 and 5

7. Conclusions

In this paper, the dynamic equations are linearized by con-
sidering the high voltage bus of the step-up transformer in-
stead of infinite bus voltage, and all the measurements are
local and it does not require overall calculation of system pa-
rameters such as equivalent external reactance. The power
system stabilizer based on the root locus and frequency re-
sponse method is used to increase stability and to damp os-
cillations of 3, 5, and 10 machines systems. The results of
these test systems when small disturbances like a 10% step
change in Vre f or a big disturbance like a 3φ fault are ap-
plied to the system show the performance of the proposed
PSS. However, by using the designed stabilizer, the oscilla-
tions will be damped. The results of slip speed response in
the three machines system show the superiority of the PSS
with lead-lag controller over the PSS with PI controller.

Table 9: PI controller parameters
G Ki Kp

1 0.005 0.03
2 0.005 0.03
3 0.002 0.07
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Figure 25: Variation of eigenvalues with Xt GEN-2, five-generator ten-bus
system

Figure 26: Variation of eigenvalues with Xt GEN-3, five-Generator Ten-bus
system
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