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Abstract

Gas has always been a serious hidden danger in coal mining. The quantity of gas emitted from the coal face is affected by
many factors. To overcome the difficulty in accurately predicting the quantity of emission, a novel predictive model (PCA-GA-
BP) based on principal component analysis (PCA), genetic algorithm (GA) and back propagation (BP) neural network was
proposed. The model was tested and applied in different coal seams at Panbei Coal Mine in Huainan, China, involving sixteen
training samples and four predicting samples. Results showed that: Gas emission quantity was significantly correlated with
burial depth, gas content in the mining layer, gas content in the adjacent layer, and layer spacing. The correlations among
these variables exceeded 60%. Linear regression analysis using the optimized model was affected by sample size and
discreteness. The correlation coefficient (R) and maximum relative error (MRE) of the PCA-GA-BP model were 0.9988 and
3.02%, respectively. The MRE of the optimized model was 70.2% and 53.2% smaller than that of the BP and GA-BP models,
respectively. The conclusions obtained in the study provide technical support for the prediction of gas quantity emitted from
coal face, and the proposed method can be used in other engineering fields.
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1. Introduction

Gas is a major threat to the safety of coal miners and
a significant research topic in mining engineering [10]. Coal
mine gas disasters in China are a recurrent problem. Gas
disasters account for more than 80% of the total coal mine
accidents and 90% of the total number of coal mine casu-
alties [16]. Gas content, one of the basic parameters in gas
emission and gas outburst prediction, plays an important role
in the prediction and prevention of coal mine fire and gas
disasters. Precise prediction of gas content is of practical
significance in mine ventilation design and production safety.
Therefore, quick and accurate prediction of mine gas has be-
come a crucial research topic.

The quantity of gas emitted from the coal face is affected
by natural, geological, and mining factors. No theory can
perfectly establish the relationships among these factors,
because of the complex nonlinear relations among them.
Therefore, studying the complex relationships among the
factors that affect gas emission is a challenge. Prediction of
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gas emission quantity is an intricate and continuously chang-
ing process. Currently, two methods are used to predict
gas emission quantity: linear and nonlinear prediction. Tra-
ditional methods mostly involve linear prediction based on
a mathematical model. However, with the change in geolog-
ical conditions, a nonlinear prediction method that is suitable
for complex conditions needs to be established. In recent
years, intelligent algorithms have been proposed for nonlin-
ear prediction, but these algorithms present disadvantages
when used in isolation. As a result, the accuracy of the pre-
diction cannot be guaranteed. A combination of several al-
gorithms to improve prediction accuracy is widely seen as
a smart development going forward.

This study analyzes the basic principles and characteris-
tics of three algorithms, namely, principal component anal-
ysis (PCA), back propagation (BP) neural network, and ge-
netic algorithm (GA), and proposes a novel coupled predic-
tion method for improving the precision of prediction.

2. State of the art

Many researchers worldwide have conducted studies on
predicting the quantity of gas emitted from the coal face.
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They have proposed many nonlinear prediction models and
approaches based on regression analysis, fuzzy compre-
hensive evaluation method, nonlinear reflection method, and
suchlike. Lv [3] emphasized the mutual impact of predic-
tion indexes and proposed a prediction method combining
PCA and multi-step linear regression analysis for the gas
quantity emitted from the coal face. The method can re-
duce the number of variables, but the established model is
intricate, and the nonlinear relationship among variables is
ignored. Bai and Zhu [23, 24] considered the uncertain re-
lationships among complex factors and developed a predic-
tion model of gas emission quantity based on the artificial
neural network. The results of the prediction with the artifi-
cial neural network were more precise than those obtained
through linear regression. However, the prediction model of
the traditional artificial neural network possesses low conver-
gence speed and easily falls into the local optimal solution.
Wang [19] presented an immune neural network prediction
model based on the immune algorithm and the neural net-
work for the prediction of gas concentration on the coal face.
Furthermore, Yan [22] presented a back propagation (BP)
neural network model based on the immune genetic algo-
rithm. The two models can overcome the limitations of the
traditional BP neural network, but cannot solve the issues
of mutual effects generated by information overlays among
the predictive indices. Liu and Wei [5, 21] proposed a grey
theory model for forecasting the gas emission quantity in
coal mines. The advantages of the grey theory model are:
minimal input data, simple calculation, and high precision.
However, the grey model does not consider the relationships
among different factors and is largely dependent on historical
data. Wang [20] proposed a fresh approach based on virtual
state variables and the Kalman filter, and developed a gas
emission quantity prediction model based on the Kalman fil-
ter algorithm. The method has the potential to deal with
the uncertainty of fuzzy clustering analysis and deliver multi-
index quantitative prediction. However, a large amount of
previous sample data is required in the prediction. Ohga [11]
adopted the simulator “COALGAS” for the prediction of gas
emission. Furthermore, Saghafi [14] presented a tier 3 ap-
proach for estimating fugitive gas emission from surface coal
mining. The new method was applied to an active Australian
open coal mine. In this method, a mathematical model needs
to be established and an appropriate mathematical method
must be selected for the prediction of gas emission quan-
tity. If the established mathematical model and the selected
estimation method are unreasonable, large errors would be
produced.

These prediction methods have contributed greatly to the
prediction of gas emission quantity, but they all possess lim-
itations. To solve the problem of the mutual influence of
forecasting indices, the information of the gas emission pre-
diction index was abstracted in this study and multiple as-
sociated and overlapping variables were transformed into
an independent comprehensive component index by using
PCA theory. GA and BP neural network were combined to
improve the weights and thresholds and optimize the local

search and adaptive abilities of the BP neural network as well
as to enhance the prediction precision of the model. PCA,
BP neural network, and GA were merged to develop a pre-
diction model called PCA-GA-BP. The model possesses high
prediction precision and fast convergence rate.

The remainder of this paper is organized as follows: Sec-
tion 3 provides a description of PCA and the GA-BP neural
network algorithm and presents the prediction model of gas
emission quantity based on the PCA-GA-BP neural network.
Section 4 shows the application of the model and discusses
the applicability of the method through a practical case. Sec-
tion 5 presents a summary of the entire paper and the rele-
vant conclusions.

3. Methodology

3.1. PCA algorithm
PCA [12, 18, 15] is a technology for data compression

and feature information extraction. In data processing, high-
dimensional data sets are often encountered, and because
of the high dimensionality of the data and the presence
of many variables, correlations exist among the variables.
Therefore, sample data do not completely reflect the main
information of the total data. When statistical methods are
used to study multivariate problems, too many variables can
affect the computational load and increase the analytical
complexity. PCA is based on the projection method. High-
dimensional data can be projected into a low-dimensional
space, such that the dimension of the data is reduced and
the data structure is simplified. During simplification, PCA is
used to deal with the related variables with as little informa-
tion loss as possible.

3.1.1. Mathematical model of PCA
Suppose that n samples, including p variables

x1, x2, . . . , xp, exist. The original data matrix of samples is
expressed as follows:

X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp

 (1)

P variables of original data matrix x compose a linear com-
bination F = AX, and p new comprehensive variables are
obtained, namely,

F1 = a11x1 + a12x2 + . . . + a1pxp

F2 = a21x1 + a22x2 + . . . + a2pxp

· · ·

Fp = ap1x1 + ap2x2 + . . . + appxp

(2)

The model must meet the following conditions [17].

1. Fi and F j are not related to each other (i , j, i, j =
1, 2, . . . , p).

2. Var (F1) ≥ Var (F2) ≥ . . . ≥ Var
(
Fp

)
, the importance of

the principal component diminishes.
3. a2

k1 + a2
k2 + . . . + a2

kp = 1, k = 1, 2, . . . , p
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3.1.2. Solution of principal components
The solution of principal components involves computing

transformation matrix A. The steps to solve the principal
components are as follows.

Step 1: The original data are standardized, and the co-
variance matrix between variables is calculated.

Step 2: The eigenvalues of covariance matrix R computed
by the Jacobi method are λ1 ≥ λ2 ≥ . . . ≥ λp. The corre-
sponding feature vectors are E1, E2, . . . , Ep, and the conver-
sion matrix is A = E′.

Step 3: According to the eigenvalues of the covariance
matrix, the variance contribution rate of the principal com-
ponents is calculated, and the cumulative variance contri-
bution rate is obtained. Variance contribution rate ηk of the
first principal components and cumulative variance contribu-
tion rate ξm of the former m (m < p) principal components
P1, P2, . . . , Pmcan be calculated as follows:

ηk = λk/

p∑
k=1

λk, ξm =

m∑
k=1

λk/

p∑
k=1

λk (3)

Step 4: The number of principal components is deter-
mined by the cumulative variance contribution rate. M prin-
cipal components are usually considered, and the condition
is that the cumulative contribution rate of their variances ex-
ceeds 80% [8, 7]. The sample information corresponding
to the former m principal components contains the vast ma-
jority of information that can be provided by the P original
variables.

3.2. BP neural network and GA
3.2.1. BP neural network

BP neural network [9, 13], which possesses a strong non-
linear mapping ability, is a multilayer feed-forward neural net-
work based on an error BP algorithm. It can be used for the
prediction of a nonlinear system and applied to the prediction
of gas quantity emitted from the coal face. The steps of the
BP neural network are as follows. First, the signal passes
from the input to the output layer, and the output value and
desired error are obtained. Second, the output error is trans-
mitted from the output to the hidden and input layers, and
the gradient descent function is used to adjust the weight of
each neuron layer. The output value is obtained again, and
the cycle is repeated until the output error achieves the de-
sired results.

BP neural networks can effectively deal with complex non-
linear problems in fuzzy prediction. However, they possess
disadvantages, such as slow convergence rate, falling easily
into a local minimum, and the likelihood of fluctuations and
oscillations when approaching the optimum [6, 4]

3.2.2. GA
GA, which is based on natural selection and genetic

mechanisms, achieves population evolution through selec-
tion, crossover, and mutation and produces global optimal
values [1]. Given the characteristics of local adjustments in
BP neural network and the complexity of nonlinear problems,

several defects exist (e.g., falling easily into the local min-
imum and slow convergence). GA and BP neural network
were combined in this study to overcome these defects.

By using GA to optimize the weights and thresholds of the
BP neural network, the performance of the BP neural net-
work can be effectively improved. The steps are as follows:

Step 1: Determine the neural network structures: the
numbers of nodes in the input and output layers are m and
n, respectively. Selecting a hidden layer, and the number
of nodes is q. Determine the basic operator of GA and its
related operation parameters: the population size is p, the
crossover probability is Pc, and the mutation probability is
Pm [2].

Step 2: Determine the weight of the network and the
threshold length. The composition is represented by a vector
x, namely,

x = {v1, v2, . . . , vs, θ1, θ2, . . . , θT }
T (4)

Where vi is the first i connection weights of the network, s
is the total number of connection weights, θ j is the threshold
of the first j neuron, and t is the total neuron number in the
hidden and output layers.

The total error of the network is defined as:

E (x) =
1
2

N∑
k=1

n∑
i=1

(yi (k) − oi (k))2 (5)

Where yi (k) and oi (k) respectively express the actual and
expected outputs of the i neuron in the output layer of the k
group and N is the sample group.

According to the optimization goal of GA, the optimal
weights and threshold vector x of the network are searched
to minimize the total network error. The GA objective func-
tion is defined as

min E (x) =
1
2

N∑
k=1

n∑
i=1

(yi (k) − oi (k))2 (6)

Correspondingly, the fitness function of GA is defined as

F (x) =
1

1 + c + E (x)
(7)

Where c is a non-negative number and satisfies c+E (x) ≥
0.

Step 3: Determine the encoding mode and length. By
considering many parameters, efficiency and precision are
improved by using a real number to encode. Each individ-
ual x contains all the connection weights and thresholds of
a network, where the dimension x of is the length of coding.

Step 4: Generate the initial population and calculate the
individual fitness value.

Step 5: According to the individual fitness evaluation and
testing, GA selection operation is performed. Individuals with
the highest adaptation degree in the reserve group are di-
rectly copied to the next generation. For other individuals,
GA selection operations are performed.
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Step 6: Execute GA crossover and mutation operations to
generate a new generation of population.

Step 7: Repeat the GA operation until the evolution of the
K generation (total of the evolutionary algebra). The network
weights and thresholds are obtained by decoding the individ-
ual with the highest adaptation degree of the K generation.
Total network error E (x′) and its fitness value F (x′) are cal-
culated.

Step 8: Implement the convergence criteria and evaluate
the results. The convergence criteria are expressed as fol-
lows:

min E < ε (8)

Where ε represent the total output error of the network. If
the convergence criteria are satisfied, a group of solutions
corresponding to fitness value F (x′) are the solutions to the
problems, which can be obtained by the network to simulate.
Otherwise, perform a selection operation in the GA space
and return to step 6.

3.3. Prediction model of gas emission quantity based on
PCA-GA-BP neural network

The problems of slow convergence and falling easily into
the local minimum in the application of the BP neural network
were overcome by combining PCA and GA for their respec-
tive advantages. Thus, the BP neural network was improved
in two ways: the sample set and initial weight threshold. The
prediction model of gas emission quantity based on PCA-
GA-BP was established. First, the input samples of BP neu-
ral network were compressed, dimension-reduced, and de-
noised by PCA. The original samples were replaced by the
first principal components as input samples. Second, the BP
neural network structure was determined and GA was used
to optimize the initial weights and thresholds of the BP neu-
ral network. Finally, the prediction of the gas quantity emitted
from coal face was realized. Fig. 1 shows the algorithm flow
of the model.

4. Results Analysis and Discussion

4.1. Predictive factors of gas emission quantity
Panbei coal mine in Huainan, China, is a high gas mine

with a production capacity of 4.0 Mt/a. The number of work-
able seams or layers is 14, and the main mineable coal
seams are 13-1, 11-2, 8, 5-2, 4-1, 3, and 1. The thickness
of each coal seam is 1.64-4.98 m, and the dip angle is 5°-
45° . The risk of gas explosion is high due to the complex
geological conditions and poor permeability of these coal
seams. These factors limit production capacity and affect
mine safety and economic benefits. To establish an effec-
tive prediction mechanism for gas disasters, 11 factors that
influence gas emission from coal faces were proposed syn-
thetically. These 11 factors were: burial depth (x1), thickness
(x2), dip angle (x3), gas content in the mining layer (x4), gas
content in the adjacent layer (x5), adjacent layer thickness
(x6), layer spacing (x7), tensile strength of rock layers (x8),

working face length (x9), propulsion speed (x10), and min-
ing intensity (x11), which were considered natural, geologi-
cal, and mining factors of gas emission. In this study, the
occurrence conditions and gas emission from coal and rocks
in coal mining faces were investigated and monitored, and
specific data are shown in Table 4.1. The PCA-GA-BP pre-
diction model of the gas quantity emitted from coal face was
established by using the measured parameters as samples.

4.2. PCA dimensionality reduction

The sample data in Table 4.1 were normalized and PCA
was conducted. The correlation matrix of each factor is
shown in Table 4.2. Gas emission quantity was significantly
correlated with burial depth, gas content in the mining layer,
gas content in the adjacent layer, and layer spacing but was
not significantly correlated with thickness, dip angle, and ad-
jacent layer thickness. Gas emission quantity was uncorre-
lated with tensile strength of rock layers, working face length,
propulsion speed, and mining intensity. The correlations be-
tween gas emission quantity and the four variables exceeded
60%, and this result indicated that the four variables were the
most important parameters affecting gas emission. Several
factors in the prediction of gas quantity emitted from the coal
face showed a clear correlation with one another, which cer-
tainly affected the prediction accuracy of the model. There-
fore, it is necessary to analyze the main components of the
predictive factors.

The characteristic root of each component, variance con-
tribution rate and cumulative variance contribution rate are
shown in Table 4.2. The principal components were selected
from large to small, and the feature vectors were selected
according to the corresponding eigenvalues. The larger the
eigenvalues were, the more important the corresponding
principal component data were. The selection criterion for
the principal components was that the cumulative variance
contribution rate exceeded 80%. Thus, after PCA dimension-
reduction processing, the first four principal components,
which contained 83.24% of the original data information,
were extracted. Most of the information was summed in
the forecast factors, so the original 11-dimensional predic-
tion factors were reduced to 4-dimensional prediction factors.
The information was consistent with that shown in Fig. 2. The
cumulative contribution rate of the first four principal compo-
nents exceeded 80%, which showed that the four principal
components fully reproduced almost all information of the
prediction factors for working face gas emission.

According to the fundamentals of PCA, each principal
component was linearly transformed. The transformation re-
lationships between the principal components Y1, Y2, Y3 and
Y4 and the predictive factors X1 − X11 were as follows:
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Figure 1: PCA-GA-BP algorithm flow chart
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Table 1: Learning sample data

Serial x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 T
Number m m ° m3/t m3/t m m MPa m m/d t/d m3/t

1 629 2.5 25 6.34 6.82 2.6 22 3.12 170 3.32 2321 6.34
2 560 1.6 35 5.76 6.14 2.1 24 4.21 180 2.75 1597 5.12
3 412 3.6 23 5.23 4.65 3.8 25 3.86 165 3.12 2480 2.89
4 580 2.2 15 5.97 5.65 2.5 18 4.65 190 4.12 3213 4.87
5 480 2.5 28 6.12 6.45 2.3 23 5.95 210 3.05 2864 3.98
6 460 1.9 40 4.65 5.21 2.1 19 6.43 160 2.97 1675 3.67
7 523 2.1 22 5.89 5.45 1.9 23 6.32 150 3.46 2756 4.22
8 635 3.1 28 5.65 6.12 2.8 28 3.54 220 3.75 3122 6.89
9 604 2.7 32 5.45 5.75 2.9 27 4.35 180 3.06 1875 7.12
10 590 2.5 10 6.21 5.98 2.4 26 6.87 195 4.23 3654 6.19
11 420 3.4 12 4.43 5.32 3.8 21 4.75 210 4.32 3852 3.52
12 654 1.7 26 6.27 6.23 1.9 26 4.86 190 3.54 2642 6.98
13 543 1.9 21 4.35 5.21 2.4 20 5.34 170 3.19 2861 5.34
14 612 2.4 34 5.64 5.78 2.8 28 3.87 200 2.56 1980 5.87
15 439 1.8 17 3.95 4.86 2.1 18 4.86 220 3.87 2987 3.04
16 424 2.6 21 4.23 4.49 2.8 17 3.87 210 3.21 2435 2.89
17 567 2.8 19 4.69 4.89 3.2 24 5.87 170 3.96 2289 5.34
18 650 1.7 27 6.23 5.76 2.0 28 6.12 190 3.12 3142 6.42
19 490 3.4 22 4.34 5.05 3.9 23 4.34 180 3.64 2643 3.98
20 570 2.4 18 5.62 6.21 2.7 21 6.34 220 4.12 2176 6.43

Table 2: Pearson’s correlation coefficient matrix of each predictive factor

Serial x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 T

x1 1
x2 -0.348 1
x3 0.196 -0.289 1
x4 0.699 -0.247 0.163 1
x5 0.684 -0.268 0.221 0.812 1
x6 -0.382 0.923 -0.279 -0.422 -0.398 1
x7 0.615 0.139 0.315 0.551 0.396 0.042 1
x8 -0.019 -0.352 -0.199 0.097 0.000 -0.399 -0.064 1
x9 -0.019 0.092 -0.277 -0.069 0.164 0.048 -0.052 -0.155 1
x10 -0.048 0.279 -0.847 -0.113 -0.057 0.234 -0.253 0.270 0.339 1
x11 -0.072 0.222 -0.751 0.027 -0.031 0.109 -0.035 0.187 0.360 0.662 1
T 0.949 -0.231 0.168 0.628 0.695 -0.273 0.635 0.013 0.061 0.015 -0.085 1

Table 3: Principal component characteristic value, variance contribution rate, and cumulative contribution rate

Principal Initial Eigenvalue Extraction Square and Loading
Characteristic Variance Contribution Cumulative Variance Characteristic Variance Contribution Cumulative Variance

Component Root Rate, % Contribution Rate, % Root Rate, % Contribution Rate, %

1 3.707 33.699 33.699 3.707 33.699 33.699
2 2.495 22.567 56.379 2.495 22.567 56.379
3 1.932 17.567 73.946 1.932 17.567 73.946
4 1.022 9.292 83.239 1.022 9.292 83.239
5 0.597 5.430 88.668
6 0.466 4.233 92.901
7 0.419 3.806 96.706
8 0.158 1.438 98.144
9 0.099 0.899 99.043
10 0.070 0.638 99.681
11 0.035 0.319 100
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Figure 2: Eigenvalues and cumulative variance contribution rates of different
principal components

Table 4: Calculated data of the principal components

Serial Number Y1 Y2 Y3 Y4 T , m3/t

1 0.9387 0.1012 0.9409 -0.4420 6.34
2 1.4405 -1.0173 -0.2397 -0.7319 5.12
3 -1.0373 -1.3421 1.3690 1.2563 2.89
4 -0.3576 1.0813 -0.5151 -0.3266 4.87
5 0.5061 0.3948 -0.1501 -0.6367 3.98
6 0.4904 -1.7613 -1.7245 0.6062 3.67
7 0.4212 0.1276 -1.1114 1.8088 4.22
8 0.2269 0.7889 1.7742 -1.0943 6.89
9 0.7169 -0.7926 1.0317 0.2720 7.12
10 -0.1359 2.1789 -0.1822 1.2371 6.19
11 -2.1361 0.8002 0.6441 -0.2005 3.52
12 1.2508 0.7995 -0.0910 -0.2269 6.98
13 -0.2275 -0.4167 -1.1415 0.3200 5.34
14 1.0560 -0.8669 1.1737 -0.7185 5.87
15 -1.1234 0.0906 -1.6324 -1.7305 3.04
16 -1.2462 -1.1104 -0.5903 -1.5451 2.89
17 -0.6601 -0.1657 0.0378 1.5762 5.34
18 1.2088 0.8038 -0.2832 0.5997 6.42
19 -1.2525 -0.7261 1.0535 0.6212 3.98
20 -0.0797 1.0322 -0.3638 -06445 6.43

Y1 = 0.197X1 − 0.166X2 + 0.182X3 + 0.198X4+

+0.188X5 − 0.181X6 + 0.139X7 + 0.016X8−

−0.062X9 − 0.155X10 − 0.124X11

Y2 = 0.17X1 − 0.027X2 − 0.256X3 + 0.192X4+

+0.191X5 − 0.082X6 + 0.065X7 + 0.145X8+

+0.176X9 + 0.286X10 + 0.295X11

Y3 = 0.137X1 + 0.37X2 + 0.046X3 + 0.124X4+

+0.121X5 + 0.338X6 + 0.327X7 − 0.321X8+

+0.063X9 − 0.03X10 + 0.006X11

Y4 = 0.042X1 + 0.172X2 − 0.104X3 + 0.131X4−

−0.191X5 + 0.144X6 + 0.289X7 + 0.476X8−

−0.738X9 + 0.075X10 + 0.049X11

According to the initial sample data and the calculation for-
mula, these data were analyzed by PCA. The results shown
in Table 4 were then used as the input data of the GA-BP
neural network.

4.3. Construction and testing of the GA-BP model
1. Structural design of the BP neural network

Figure 3: Three-layer BP neural network model

According to the results of PCA, the dimensions of
the input samples of the BP neural network were 4.
Therefore, the four prediction factors were used as in-
put nodes for the BP neural network. Gas emission
data from the coal face were used as the output node
of this network, and one output node was set. Ten-
sig and purelin functions were selected as the activa-
tion function of the hidden and output layers of the BP
neural network, respectively, and trainlm function was
used in the network-training algorithm. Changes in the
number of hidden layers and hidden nodes can affect
network performance. As the number of hidden layer
nodes increases, network complexity increases. There-
fore, a three-layered BP neural network model was se-
lected, and circular iteration was used to determine the
optimal network structure. Modeling was performed 30
times in each network structure variation to determine
the best hidden-layer node number. Given that the er-
ror was minimal when the hidden-layer neuron number
was 12, this number was set to 12. The BP neural net-
work prediction model was constructed with 4-12-1. The
topology of the BP neural network is shown in Fig. 3.

2. Optimization of the initial weight and threshold values of
GA.
Before network training, GA was used to obtain the ini-
tial weights and thresholds. By using MATLAB, the pa-
rameters were set as follows: population size and ge-
netic algebra were set to 40 and 50, respectively, and
crossover and mutation rates were set to 0.7 and 0.01,
respectively. The optimal initial weight and threshold
values of the BP neural network were obtained.

3. Network training and testing
According to certain rules, the initial weights and thresh-
olds for genetic optimization were inputted into the BP
neural network. Sixteen groups of samples (1-16) were
trained to obtain the desired error, and the network was
tested with four sets of samples (17-20).
Network training parameters were set to goal=0.02 and
lr=0.0001. The optimization process for the initial weight
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and threshold of the neural network is shown in Fig. 4.
The average and optimal fitness values had a good fit
and maintained stability after 50 generations. Fig. 5
shows the mean square error curve of the training pro-
cess. When the training times reached 4, the mean
square deviation was 10−4. The smaller the mean
square deviation was, the closer the predicted value
was to the expected value; however, the correspond-
ing training times increased, which affected the net-
work training speed, and the model might even fall into
a death cycle. Comprehensive consideration combined
with the prediction results showed that the mean square
deviation of 10−4 guaranteed the accuracy of the predic-
tion results and did not affect the rapidity of the training
process. Therefore, the gas quantity emitted from the
coal face was predicted quickly and accurately.

Considering that some randomness existed in the training
process, the training results were tested to ensure their ac-
curacy. The linear fitting results of the output value and the
expected value are shown in Fig. 6. The correlation coef-
ficient (R) was 0.9988, and the fitting degree was close to
1. Compared with the BP model (R=0.7916) and the GA-BP

model (R=0.9134), the optimized model had higher accuracy.
The network output value was close to the expected value,
and the tracking effect was improved.

Table 4.3 shows the predicted results obtained from the
PCA-GA-BP prediction model. The predicted results for the
four groups of working faces were 5.44, 6.32, 3.89, and
6.62 . The relative errors of the predicted output were all
controlled within 5% and were significantly reduced by the
not-principal component analysis. The maximum relative
error (MRE) of the PCA-GA-BP model was 3.02%. Com-
pared with that of the BP model (MRE=10.12%) and GA-BP
model (MRE=6.45%), the MRE of the optimized model was
reduced by 70.2% and 53.2%, respectively. The neural net-
work model after PCA performed better than the standard BP
model and GA-BP model in terms of forecasting precision.

5. Conclusions

To improve the prediction precision of gas emission quan-
tity and assess the performance of the prediction model,
a novel predictive model based on PCA-GA-BP neural net-
work was established in this study. The proposed model was
applied to the gas emission prediction of Panbei Coal Mine
in Huainan, China. The following conclusions were derived.

1. The PCA method helps deal with the collinearity prob-
lems between indexes and improves the prediction ac-
curacy and efficiency; the more indexes there are, the
better the superiority is.

2. Gas emission quantity is significantly correlated with
burial depth, gas content in the mining layer, gas con-
tent in the adjacent layer, and layer spacing. However,
it has no significant correlation with the other variables.
Geological factors are the main factors affecting the gas
emission quantity.

3. Compared with the BP neural network, the combination
of GA and BP neural network exerts a better effect on
regression prediction of nonlinear problems, and the ef-
fect has a significantly positive correlation with sample
size and discreteness.

4. The PCA-GA-BP model has higher prediction accuracy
and better comprehensive performance than the BP and
GA-BP models. This study provides a new method for
accurately predicting gas quantity emitted from the coal
face.

The proposed method can accurately reflect the nonlinear
characteristics and regularity of gas emission quantity and
achieve an ideal prediction effect. The method is adaptable
and operable. This study also provides convenient and accu-
rate technical support for the prevention and control of mine
gas disasters. However, the proposed model does not con-
sider the influence of sample representativeness on predic-
tion accuracy. The amount of gas emission sample data on
different areas and different mines should be increased in
future studies to further enhance prediction precision.
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Figure 6: Linear fitting results of the training process: (a) result of the training error, (b) result of the validation error, (c) result of the test error, and (d) results
of all errors

Table 5: Prediction results
Serial Measured BP GA-BP PCA-GA-BP

Num-
ber

Value,
m3/t

Predicted Value,
m3/t

Relative Error,
%

Predicted Value,
m3/t

Relative Error,
%

Predicted Value,
m3/t

Relative Error,
%

17 5.34 5.87 9.98 5.67 6.24 5.44 1.91
18 6.42 6.74 4.92 6.63 3.29 6.32 1.50
19 3.98 3.78 5.03 3.87 2.69 3.89 2.01
20 6.43 7.08 10.12 6.85 6.45 6.62 3.02
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