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Abstract

In the present investigation, artificial neural networks are applied to model scattering and absorption properties occurring in
particle radiation interaction for numerical simulation of pulverized coal combustion. To determine averaged scattering and
absorption properties, an averaging procedure over spectral incident radiation profile and particle size distribution is applied.
These averaged properties then are approximated by means of an artificial neural network. A study to determine a suitable
network architecture is performed.
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1. Introduction

For a reliable numerical simulation of solid fuel combus-
tion processes, several physical effects have to be modeled
accurately. This includes simulation of turbulent flow with
particle tracking, pyrolysis of the particles and combustion
of char and volatiles. Among these, scattering and absorp-
tion of thermal radiation by fuel and ash particles should be
considered as well.

The interaction of particles and thermal radiation is de-
termined by a variety of parameters: spectral distribution of
incident radiation, size distribution and radiative properties of
the particles. Since the particles are involved in a combus-
tion process, their radiative properties and size distribution
are changed as the burnout progresses. As a simplification,
the particles are assumed to be spherical. To describe the
variation of scattering and absorption properties, Mie theory
for coated particles is applied in the present work. Averag-
ing over a particle size distribution and the incident radiation
profile in the infrared spectral range is performed. Thereby,
spectral variations of the index of refraction are taken into
account.

In a numerical solution of the radiative transport equation,
a direct computation of the phase function and scattering and
absorption efficiencies from Mie theory in each iteration step
is not possible due to high computational demands. Thus,
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adequate substituting strategies and/or models have to be
applied.

Two steps in the process of determining the radiative prop-
erties can be described by a model. The first step is to model
or store the amount of radiation, scattered into a discrete
solid angle. Therefore, integration of the phase function over
this solid angle has to be performed. This approach lacks
flexibility, since the scattered intensity has to be stored for
each angular discretization pattern that could potentially be
applied in the simulation. The second approach aims at stor-
ing the value of the phase function at specific angles directly.
A model applied at this stage needs to enable fast data ac-
cess, a low memory requirement is required. Also, flexibility
compared to applying the previously calculated data must
be ensured. As soon as a discretization pattern is chosen,
integration of the phase function has to be performed. In
the present paper, a model for the second approach is pre-
sented.

Due to the complex dependency of scattering and absorp-
tion on the influential parameters, classical approximations
such as linear or polynomial approaches are not well suited
for modelling purposes. In order to capture the relevant char-
acteristics, artificial neural networks are applied in this study.

Artificial neural networks (ANN) have been used in various
applications in many diverse areas [1]. They are often used
for function approximation, which simply means the mapping
of an input to an output. However, one of their major advan-
tages is the ability to produce reasonable outputs for inputs
not encountered in training (interpolation). If the input val-
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ues are out of range of the training data, the network is able
to extrapolate. However, extrapolation involves large uncer-
tainties. Ihme et al. [2] applied artificial neural networks to
represent chemistry in LES-Simulations of turbulent flames.
They found an optimal architecture for all relevant thermo-
chemical species. According to Ihme, a major advantage of
neural networks in combustion simulations is their consider-
ably lower storage requirement compared to tabulation ap-
proaches. Ihme et al. [2] also found that the retrieval of data
from the network takes up to five times longer than retriev-
ing data stored with a tabulation technique. Nevertheless,
the time required for this retrieval is still low, compared to the
overal computation time in LES Simulations. In general, they
found good agreement between the results computed with
an artificial network and a tabulation technique.

Aiming at the advantages mentioned before, artificial neu-
ral networks are applied in this study to model particle ra-
diation interaction. First, suitable network architectures are
identified followed by assessments of the approximation ac-
curacy, the robustness and the training effort of the network.

2. Methods

2.1. Mie theory for coated particles

Mie theory [3, 4] yields a mathematical description of scat-
tering and absorption of thermal radiation by spherical par-
ticles based on a solution of the Maxwell equations. This
solution consists of a series of spherical harmonics with cor-
responding coefficients, called scattering coefficients. The
calculation of the scattering coefficients as well as the eval-
uation of the spherical harmonics is computationally expen-
sive.

In the present investigation, scattering and absorption
properties are calculated depending on the burnout progress
B of the particle. Therefore, Mie Theory for coated particles
is applied [5, 6]. The inner core is assumed to consist of coal,
surrounded by an outer layer consisting of ash. Each mate-
rial is represented by the corresponding index of refraction.

2.2. Averaging of scattering and absorption properties

The averaged scattering phase function Φ is obtained by
integrating over the infrared wavelength interval from 0.3 µm
up to 12 µm and particle sizes from Dmin = 0.8 µm to Dmax =

200 µm

Φ̄ =
1
C̄

Dmax∑
Dmin

λmax∑
λmin

Φ(x)Qsca(x)E∆λ

C(D)P∆D (1)

with the finite scattering angle interval ∆θ. ∆D and ∆λ
denote that the distribution functions are integrated over the
corresponding particle size or wavelength interval. A simi-
lar procedure is performed for scattering and absorption effi-
ciencies Qi:

Q̄i =
1
C̄

Dmax∑
Dmin

λmax∑
λmin

Qi(x)E∆λ

C(D)P∆D (2)
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Figure 1: Indices of refraction as applied for coal and ash

with i denoting either sca or abs. x is the dimensionless
size parameter and C is the cross section of the particle with
diameter D. Weighting is performed with a Rosin-Rammler
particle size distribution P, defined by an average diameter
of Dm and a spread parameter of nRR . The averaged cross
section is calculated as C̄ =

∑Dmax
Dmin

C(D)P∆D. Φ and Q de-
pend on the complex refractive index m as well. m has been
dropped from the equations to improve readability. Details
on the averaging procedure can also be found in [7].

2.3. Index of Refraction, Particle size distribution and
Burnout Progress

For the spectrally varying index of refraction of coal, data
determined by Manickavasagam and Mengüç [8] were ap-
plied. Ash was modeled with the refractive index given by
Neubronner [9]. The real and complex parts for the refrac-
tive indices are shown in Fig. 1. A Rosin-Rammler particle
size distribution (PSD) was applied with mean diameters of
Dm,coal = 100 µm, Dm,ash = 10 µm and a spread parameter of
nRR = 3.5 for both cases. The variation of the mean diameter
with burnout B is described by the following relationship:

Dm(B) = (Dc − Da)(1 − B)a + Da (3)

The inner diameter was calculated from the outer diameter
by relating the volume of the outer layer to the volume of the
entire particle

Dinner =
3
√

(1 − B)Dm (4)

In the present study, 120 unequally spaced burnout states
were evaluated.

2.4. Approximation approaches
The presented approach of calculating averaged scatter-

ing properties requires a repeated computationally expen-
sive evaluation of the equations resulting from Mie theory.
For the application in a numerical simulation of coal com-
bustion, a computationally less expensive calculation proce-
dure is desirable. Therefore, approximate methods are intro-
duced.
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Figure 2: Architectural graph of a multilayer perceptron with two hidden lay-
ers. A detailed depiction of a single neuron is shown in Fig. 3 (Source: [1])

Figure 3: Sketch of the connections to kth neuron in a neural network
(Source: [1])

Several approximate phase functions are available, (see
e.g. [10]), but their usefulness for application in coal com-
bustion is limited [7]. In the authors’ previous studies, a tab-
ulation technique was investigated [10]. In the present study,
the suitability of artificial neural networks for the approxima-
tion of scattering properties is investigated.

2.5. Artificial Neural Networks
In principle, artificial neural networks can be applied to

perform many tasks, such as pattern recognition or classi-
fication problems [1]. In the present investigation, their capa-
bility for function approximation and interpolation is used.

In this study, a feedforward multilayer perceptron (MLP)
has been applied. The architecture of an MLP is displayed in
Fig. 2. An MLP consists of an input layer, an output layer
and one or more hidden layers. Each hidden layer con-
tains a number of neuron elements that are connected via
synapses to the neurons of the next layer. These synapses
are weighted by synaptic weights w to strengthen or weaken
the connection between two neurons (see Fig. 3 for an il-
lustration). The information incoming into each neuron is
summed up and a bias b is applied. An activation function
is applied to compute the output y.

Usually, sigmoid functions are chosen as a transfer func-
tion, since they are bounded, continuous, differentiable and
monotonically increasing. Differentiability is a necessary
condition to perform training by backpropagation of errors in

Table 1: Parameter set for averaged scattering and absorption properties

Parameter Symb. Value

Planck Temperature, K T 1700
Mean Diameter for coal, µm Dm 100
Mean Diameter for ash, µm Dm 10
Spread of PSD n 3.5
Refractive index of coal mc see Fig. 1
Refractive index of ash ma see Fig. 1
Spectral range, µm λ 0.3–12
Diameter Range , µm Dm 8–120
Discrete burnout states nB 120
Discrete scattering angles nθ 40000

the training of the network. Thus, in the present investiga-
tion, the sigmoid function hyperbolic tangent was applied for
the hidden layers, the input and output layers made use of
a linear transfer function. The size of the hidden layer can
be chosen freely, the size of the input and the output layer is
equal to the size of the input and output data for each data-
point respectively.

For the present investigation, the input values consist of
the burnout B and the scattering angle θ. From these in-
puts, the value for a specific scattering angle is calculated
by the network. The efficiencies, a vector consisting of two
entries, can be computed by a separate net, requiring only
the burnout as an input.

The training of the network was performed by backpropa-
gation of errors with the Levenberg-Marquardt algorithm [1].
Thereby, the synaptic weights and the bias are adjusted, so
that the output of the network matches the training data. The
implementation provided by the framework of MATLAB was
applied. The training data was generated using equations
resulting from Mie theory.

Note that a neural network can suffer from overfitting, an
effect that occurs when the network is very large or com-
plex with regard to the data available. To avoid overfitting, all
networks that were investigated are small with regard to the
training data set consisting of 120 values for B and 40000
values for θ, which results in 4.8 million single training data-
points for the phase function Φ.

To represent a neural network, the following notation was
chosen: [n1 n2 ... ni] with ni representing the number of neu-
rons in the hidden layer number i.

2.6. Investigated Case

In the present investigation, a specific set of parameters
determining the scattering behavior was investigated, see
Table 1. Considering their influence on the phase func-
tion and efficiencies, the most important parameters are the
mean diameters and the refractive indices of coal and ash
respectively.

3. Results and Discussion

3.1. Averaged Scattering phase function and Efficiencies

Averaged scattering properties are computed as de-
scribed in the methods section. The result for the phase
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Figure 4: Surface plot of normalized intensity over scattering angle and
burnout progress. Intensity is normalized to yield a value of 1 for the sum
over θ for each burnout state B

Figure 5: Scattering and absorption efficiencies over burnout

function Φ depending on scattering angle θ and burnout B
is shown in Fig. 4.

The efficiencies depending on the burnout state of the par-
ticles are presented in Fig. 5. Graphs for the case of coal
and ash as well as selected intermediate states are shown
in Fig. 6.

The surface plot of the scattering phase function over Φ

and burnout in Fig. 4 gives insight on the scattering behavior
during burnout. A shift from close to purely forward scattering
for coal (B = 0) to a more pronounced scattering behavior in
different directions than forward, including a stronger amount
of backscattering can be observed for values of B larger than
B = 0.5. A strong ripple structure is found, that is due to the
interferences occurring when light is scattered by a particle.
Surprisingly, these ripples are not flattened out by the aver-
aging procedure introduced in the methods section, but are
still visible in logarithmic scale.

3.2. Approximation Quality and Optimized Network Architec-
ture

The architecture of an artificial neural network has to be
chosen so that size and functionality are balanced well for
the task at hand and overfitting can be prevented [1]. To de-
termine such an architecture, several different designs and

Figure 6: Upper plot: scattering phase function for selected burnout states,
log scale. Lower plot: forward scattering peak, normal scale, θ ranges from
0 to 1. Note that the plots are normalized to yield 1 for θ = 0 for comparison

thereby sizes are compared to yield an optimal function ap-
proximation ability in this study. The phase functions calcu-
lated with selected networks are presented in Fig. 7.

Networks with a large number of hidden neurons are
expected to capture the phase function more accurately,
whereas small networks require less disk space. However,
large networks are more likely to suffer from overfitting. In
general, all artificial networks applied here are capable of
capturing the profile of the phase function for all burnout
states. Nevertheless, differences in approximation quality
depending on the type of network can be observed. The
network with the architecture [10 15 10] (number of neurons
in each hidden layer) follows the general trends of the given
phase function very well and can also follow the small oscil-
lations occurring for B = 0.75 and B = 1.

The network with the architecture [5 9 5] shows difficul-
ties with approximating the oscillations correctly, although
the general trends are met. The network with the architecture
[5 3] gives only a rough representation of the phase function.
The network is probably too small to be able to reproduce
the complex shape of the original data.

The major advantage of a neural network compared with
conventional methods, e.g. analytical phase functions, is the
ability to approximate unknown functional correlations. For
an analytical approximation, such a correlation has to be
carefully selected for each case specifically. A neural net-
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Figure 7: Approximation with artificial neural networks for different burnout states

Table 2: Tested artificial neural networks (excerpt) and relative deviation to
Mie theory (averaged over relative deviation for each scattering angle Φ and
burnout state B)

Network architecture Relative deviation

[10 15 10] 0.0664
[10 15] 0.0719
[10 15] 0.1486
[5 9] 0.1884
[5 9] 0.1914
[5 9 5] 0.1958
[5 9] 0.1987
[5 9] 0.3440
[5 9] 0.4013
[5 10] 0.7705
[4 6] 0.9665
[5 3] 1.3637
[20 10] 12.0843
[2 3] 12.0970
[3 6] 33.1342
[15 10 5] 36.5046

work is able to identify the structure of a function in train-
ing and store it within its neurons and synapses and thereby
avoid the effort required to find a suitable analytical function.
The advantage of a neural network over table interpolation
from previously stored data lies in its significantly lower mem-
ory requirement.

The size of the network is an important factor that influ-
ences the ability of the network to approximate functions (see
Table 2). But the architecture in terms of the numbers of neu-
rons per layer and numbers of hidden layers can also influ-
ence the approximation quality.

However, deriving rules to identify an architecture with
good approximation quality is not straight forward. Several
very different network architectures show reasonable ap-
proximation qualities. Other network designs with architec-

Table 3: Tested artificial neural networks (excerpt) and relative deviation to
Mie theory for scattering and absorption efficiencies (averaged over relative
errors for each burnout state B)

Network architecture Qabs Qsca

[5 7] 1.80e-04 2.74e-04
[5 10] 1.88e-04 0.00190
[5 9] 2.02e-04 2.25e-04
[7 3] 3.07e-04 7.55e-04
[5 5] 3.09e-04 2.03e-04
[5 6] 3.46e-04 0.001
[7 9] 4.86e-04 0.00210
[10 10] 0.0011 9.15e-04
[20 10] 0.00115 0.00150
[5] 0.0016 0.0012
[5 7 9] 0.0021 8.16e-04
[10] 0.0023 4.36e-04
[7 7] 0.0037 2.99e-04
[3] 0.0055 0.002
[1] 0.0494 0.0114

tures similar to those with very good approximation quality
show poor results (see Table 2). Therefore, one of the main
difficulties in the application of artificial neural networks is
to choose an appropriate network design. Also, training the
network with a different subset of the training data may lead
to slightly different results.

A comparison of the approximation quality for the scatter-
ing and absorption efficiencies with different network archi-
tectures is shown in Table 3. All networks showed very good
approximation quality, even a network with just one neuron
was able to represent the scattering and absorption efficien-
cies with a relative deviation of 0.0494 and 0.0114 respec-
tively.
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3.3. Memory requirement and speed of evaluation

Ihme et al. [2] found that the evaluation time for an ANN is
approximately 5 times higher than an efficiently implemented
data storage and retrieval technique. In the present study,
this observation has been confirmed.

The storage requirement for the networks applied is below
10 kB for the largest network presented here. Note that the
Matlab ANNs can serve for a variety of purposes and there-
fore may provide features (e.g. adaption) not applied here.
Several variables of the datatype string are stored with the
network, denoting the activated functions. Therefore, an ef-
ficient implementation optimized for memory reduction might
reduce this requirement significantly. The number of weights
stored for the largest network is 366.

The storage requirements for matrices containing the
data required for table interpolation are significantly larger.
A very small table, consisting of values for 25 burnout states
and 400 scattering angles already requires 72 kB of mem-
ory, storing 10000 data points. The matrix containing 50
burnout states and 4000 scattering angles requires a size of
1.5 MB, the matrix applied in the training of the ANNs with
120 burnout states and 40000 scattering angles requires
7.7 MB.

This matrix only includes the data computed for the pa-
rameters listed in Table 1. If scattering phase functions for
a broader range of parameters have to be stored, these
memory requirements increase, therefore the application of
models is inevitable. A promising option is provided by artifi-
cial neural networks.

4. Conclusions

In the present paper, the representation of the scattering
phase function (and scattering/absorption efficiences) was
discussed. The approximation with artificial neural networks
yielded a very good approximation quality for specific net-
work designs. The identification of these designs is not
straightforward. Additionally, the training of such an artificial
neural network is time consuming and requires experience,
since training can fail and the approximation quality can vary
for network architectures that are similar at first glance.

However, the results presented here show that artificial
neural networks can be successfully applied to approximate
complex scattering phase functions in particle radiation inter-
action in numerical simulations of pulverized coal combus-
tion.
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Nomenclature

θ Scattering angle, -

ϕ Activation function, -

B Burnout progress, -

C Crosssection, µm

E Planck spectral intensity distribution, -

nRR Spread parameter (Rosin Rammler PSD)

P Particle size distribution, -

Qabs Absorption efficiency, -

Qsca Scattering efficiency, -

w Synaptic weights, -

x Dimensionless size parameter x = πD
λ

, -
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