Impact of selected parameters on performance of the Adiabatic Liquid Air Energy Storage system

Piotr Krawczyk, Lukasz Szablowski, Krzysztof Badyda, Sotirios Karellas, Emmanuel Kakaras

Abstract


The paper presents a thermodynamic analysis of a selected hypothetical liquid air energy storage (LAES) system. The
adiabatic LAES cycle is a combination of an air liquefaction cycle and a gas turbine power generation cycle without fuel
combustion. In such a system, heat of compression is stored and subsequently used during the expansion process in the
turbine.
A mathematical model of the adiabatic LAES system was constructed. Balance calculation for a selected configuration of
the energy storage system was performed. The influence of pressure in the air liquefaction cycle and the gas turbine power
generation cycle on storage energy efficiency was analyzed. The results show that adiabatic liquid air energy storage systems
could be very effective systems for storing electrical power, with efficiency levels reaching as high as 57%.

Keywords


energy storage; adiabatic LAES; air liquefaction

Full Text:

PDF

References


M. Wołowicz, J. Milewski, K. Futyma, W. Bujalski, Boosting the efficiency

of an 800 mw-class power plant through utilization of low temperature

heat of flue gases, in: Applied Mechanics and Materials, Vol.

, Trans Tech Publ, 2014, pp. 315–321.

A. Skorek-Osikowska, L. Bartela, Model of a supercritical oxy-boileranalysis

of the selected parameters, Rynek Energii (5) (2010) 69–75.

K. Badyda, Characteristcs of advanced gas turbine cycles, Rynek Energii

(3) (2010) 80–86.

J. Kotowicz, Ł. Bartela, The influence of the legal and economical environment

and the profile of activities on the optimal design features

of a natural-gas-fired combined heat and power plant, Energy 36 (1)

(2011) 328–338.

J. Kotowicz, M. Job, M. Brze˛czek, The characteristics of ultramodern

combined cycle power plants, Energy 92 (2015) 197–211.

M. Skrzypek, R. Laskowski, Thermal-hydraulic calculations for a fuel

assembly in a european pressurized reactor using the relap5 code,

Nukleonika 60 (3) (2015) 537–544.

D. Ziviani, A. Beyene, M. Venturini, Advances and challenges in orc

systems modeling for low grade thermal energy recovery, Applied Energy

(2014) 79–95.

H. Madi, A. Lanzini, S. Diethelm, D. Papurello, M. Lualdi, J. G. Larsen,

M. Santarelli, et al., Solid oxide fuel cell anode degradation by the

effect of siloxanes, Journal of Power Sources 279 (2015) 460–471.

J. Milewski, A. Miller, J. Sałaci´ nski, Off-design analysis of sofc hybrid

system, International Journal of Hydrogen Energy 32 (6) (2007) 687–

J. Kupecki, Modeling platform for a micro-chp system with sofc operating

under load changes, in: Applied Mechanics and Materials, Vol.

, Trans Tech Publ, 2014, pp. 205–208.

J. Milewski, T. S´wiercz, K. Badyda, A. Miller, A. Dmowski, P. Biczel,

The control strategy for a molten carbonate fuel cell hybrid system,

international journal of hydrogen energy 35 (7) (2010) 2997–3000.

J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,

Variant analysis of the structure and parameters of sofc hybrid systems,

in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,

, pp. 306–312.

J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic

numerical analysis of cross-, co-, and counter-current flow configuration

of a 1 kw-class solid oxide fuel cell stack, International Journal

of Hydrogen Energy 40 (45) (2015) 15834–15844.

J. Milewski, K. Badyda, Z. Misztal, M. Wołowicz, Combined heat and

power unit based on polymeric electrolyte membrane fuel cell in a hotel

application, Rynek Energii (5) (2010) 118–123.

J. Milewski, J. Lewandowski, Solid oxide fuel cell fuelled by biofuels,

ECS Transactions 25 (2) (2009) 1031–1040.

J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide fuel

cells fed by dme, International Journal of Hydrogen Energy 40 (35)

(2015) 12009–12022.

J. Milewski, W. Bujalski, M. Wołowicz, K. Futyma, J. Kucowski,

R. Bernat, Experimental investigation of co 2 separation from lignite

flue gases by 100 cm 2 single molten carbonate fuel cell, International

Journal of Hydrogen Energy 39 (3) (2014) 1558–1563.

J. Milewski, G. Discepoli, U. Desideri, Modeling the performance of

mcfc for various fuel and oxidant compositions, International Journal

of Hydrogen Energy 39 (22) (2014) 11713–11721.

J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal

combustion engine fuelled by natural gas operating in distributed generation,

Energy Procedia 14 (2012) 1478–1483.

L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a

natural gas fuelled piston engine working in distributed generation system,

Rynek Energii (3) (2011) 33–40.

L. Chybowski, R. Laskowski, K. Gawdzi´nska, An overview of systems

supplying water into the combustion chamber of diesel engines to decrease

the amount of nitrogen oxides in exhaust gas, Journal of Marine

Science and Technology 20 (3) (2015) 393–405.

D. Thombare, S. Verma, Technological development in the stirling

cycle engines, Renewable and Sustainable Energy Reviews 12 (1)

(2008) 1–38.

A. Chmielewski, R. Gumi´ nski, S. Radkowski, Chosen properties of a

dynamic model of crankshaft assembly with three degrees of freedom,

in: Methods and Models in Automation and Robotics (MMAR), 2015

th International Conference on, IEEE, 2015, pp. 1038–1043.

A. Chmielewski, R. Gumin´ski, J. Ma˛czak, S. Radkowski, P. Szulim,

Aspects of balanced development of res and distributed microcogeneration

use in poland: Case study of a chp with stirling engine,

Renewable and Sustainable Energy Reviews 60 (2016) 930–952.

A. Chmielewski, S. Gontarz, R. Gumin´ski, J. Ma˛czak, P. Szulim, Research

study of the micro cogeneration system with automatic loading

unit, in: Challenges in Automation, Robotics and Measurement Techniques,

Springer, 2016, pp. 375–386.

K. Wang, S. R. Sanders, S. Dubey, F. H. Choo, F. Duan, Stirling cycle

engines for recovering low and moderate temperature heat: A review,

Renewable and Sustainable Energy Reviews 62 (2016) 89–108.

A. Chmielewski, S. Gontarz, R. Gumin´ski, J. Ma˛czak, P. Szulim,

Research on a micro cogeneration system with an automatic loadapplying

entity, in: Challenges in Automation, Robotics and Measurement

Techniques, Springer, 2016, pp. 387–395.

K. Badyda, H. Kapro´ n, Operation and development of wind energy in

poland, Rynek Energii 3 (2013) 61–67, in Polish.

K. Badyda, Energetics in poland. do we have a concept of development?,

Energetyka 5 (2015) 274–283, in Polish.

P. Zahadat, J. Milewski, Modeling electrical behavior of solid oxide

electrolyzer cells by using artificial neural network, International Journal

of Hydrogen Energy 40 (23) (2015) 7246–7251.

E. Barbour, D. Mignard, Y. Ding, Y. Li, Adiabatic compressed air energy

storage with packed bed thermal energy storage, Applied Energy 155

(2015) 804–815.

F. de Bosio, V. Verda, Thermoeconomic analysis of a compressed air

energy storage (caes) system integrated with a wind power plant in the

framework of the ipex market, Applied Energy 152 (2015) 173–182.

W. Liu, L. Liu, L. Zhou, J. Huang, Y. Zhang, G. Xu, Y. Yang, Analysis

and optimization of a compressed air energy storage—combined cycle

system, Entropy 16 (6) (2014) 3103–3120.

L. Szablowski, J. Milewski, Dynamic analysis of compressed air energy

storage in the car, Journal of Power Technologies 91 (1) (2011) 23–36.

R. Morgan, S. Nelmes, E. Gibson, G. Brett, Liquid air energy storage–

analysis and first results from a pilot scale demonstration plant, Applied

Energy 137 (2015) 845–853.

X. Xue, S. Wang, X. Zhang, C. Cui, L. Chen, Y. Zhou, J. Wang,

Thermodynamic analysis of a novel liquid air energy storage system,

Physics Procedia 67 (2015) 733–738.

B. Kantharaj, S. Garvey, A. Pimm, Thermodynamic analysis of a hybrid

energy storage system based on compressed air and liquid air, Sustainable

Energy Technologies and Assessments 11 (2015) 159–164.

B. Kantharaj, S. Garvey, A. Pimm, Compressed air energy storage with

liquid air capacity extension, Applied Energy 157 (2015) 152–164.

S. Wang, X. Xue, X. Zhang, J. Guo, Y. Zhou, J. Wang, The application

of cryogens in liquid fluid energy storage systems, Physics Procedia

(2015) 728–732.

A. J. Pimm, S. D. Garvey, B. Kantharaj, Economic analysis of a hybrid

energy storage system based on liquid air and compressed air, Journal

of Energy Storage 4 (2015) 24–35.

M. Wang, P. Zhao, Y. Wu, Y. Dai, Performance analysis of a novel energy

storage system based on liquid carbon dioxide, Applied Thermal

Engineering 91 (2015) 812–823.

R. F. Abdo, H. T. Pedro, R. N. Koury, L. Machado, C. F. Coimbra, M. P.

Porto, Performance evaluation of various cryogenic energy storage

systems, Energy 90 (2015) 1024–1032.

B. Ameel, C. T’Joen, K. De Kerpel, P. De Jaeger, H. Huisseune,

M. Van Belleghem, M. De Paepe, Thermodynamic analysis of energy

storage with a liquid air rankine cycle, Applied Thermal Engineering

(1) (2013) 130–140.

AspenTech, HYSYS 3.2 Operations Guide (2003).

D.-Y. Peng, D. B. Robinson, A new two-constant equation of state, Industrial

& Engineering Chemistry Fundamentals 15 (1) (1976) 59–64.

P. Krawczyk, . Szabłowski, K. Badyda, Energy analysis of liquid air energy

storage cycle. influence of the pressure in the liquefaction section

on the process efficiency, in: Proceedings of VI Science and Technical

Conference - Gaseous Energetics 2016, Vol. 2, 2016, pp. 47–58.


Refbacks

  • There are currently no refbacks.