Analysis of Hydrogen Production in Alkaline Electrolyzers

Janusz Kotowicz, Michał Jurczyk, Daniel Węcel, Włodzimierz Ogulewicz


Increasing the share of renewables in the energy mix at the expense of non-renewable sources, which account for a major
part of base load power generation units, adversely affects the stability of power systems. In order to maintain stability, there
is a need to develop electric energy storage. One solution is to store surplus energy in the form of hydrogen. At present
hydrogen is mainly obtained in the processes of using non-renewable fuels. However, it may also be obtained through an
electrolysis process, powered by electricity produced from renewable energy sources. This article presents the principle of
operation of various types of electrolyzers and presents selected characteristics for alkaline electrolyzers.


electrolysis, electrolyzer, hydrogen, efficiency

Full Text:



D. Wecel, W. Ogulewicz, Identification influence of the electrolyser

power supply method on efficiency hydrogen fuel production, RYNEK

ENERGII (4) (2010) 77–82.

J. Kotowicz, M. Jurczyk, Efficiency of diabatic caes installation, Rynek

(4) (2015) 49–56.

D. Wecel, W. Ogulewicz, J. Kotowicz, M. Jurczyk, Dynamic of electrolyzers

operation during hydrogen production, Rynek Energii 122 (1)

(2016) 59–65.

W. Ogulewicz, D. Wecel, G. Wiciak, H. Lukowicz, The concept of test

installation of the system: Photovoltaic cell-hydrogen generator fuel

cell, Rynek Energii (2) (2010) 108–112.

P. Millet, S. Grigoriev, Water electrolysis technologies, Renewable Hydrogen

Technologies: Production, Purification, Storage, Applications

and Safety.

A. Godula-Jopek, Hydrogen Production: By Electrolysis, John Wiley &

Sons, 2015.

Kotowicz J., Ogulewicz W., We˛cel D., Jurczyk M.: Analysis of hydrogen

electrolyzer work. The19th Annual International Conference Energy

and Environment 2015, Ostrava, 2015, s. 44-47.

J. Milewski, G. Guandalini, S. Campanari, Modeling an alkaline electrolysis

cell through reduced-order and loss-estimate approaches,

Journal of Power Sources 269 (2014) 203–211.

A. Ursua, L. M. Gandia, P. Sanchis, Hydrogen production from water

electrolysis: current status and future trends, Proceedings of the IEEE

(2) (2012) 410–426.

Smolinka T., Gunther M., Garche J.: Stand und Entwicklungspotenzial

der Wasser elektrolysezur Herstellung von Wasserstoffaus Regenerativen

Energien. Fraunhofer ISE, 2011.

Millet P.: Hydrogen production by polymer electrolyte membrane water

electrolysis. Compendium of Hydrogen Energy: Hydrogen Production

and Purification, chapter 9. A volume in Woodhead Publishing Series

in Energy , 2015, s.255-286.

Bertuccioli L., Chan A., Hart D., Lehner F., Madden B.: StandenE.:

Study on Development of water electrolysis in the European Union,

Final Report 2014. New Energy World fuel cells and hydrogen for sustainability.

M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, A comprehensive review

on pem water electrolysis, International journal of hydrogen energy

(12) (2013) 4901–4934.

W. Ogulewicz, D. We˛cel, G. Wiciak, H. Łukowicz, J. Kotowicz,

T. Chmielniak, Pozyskiwanie energii z ogniw paliwowych typu pem

chłodzonych ciecza˛, Wydawnictwo Politechniki S´ la˛skiej, Gliwice.

L. Bartela, J. Kotowicz, K. Dubiel, Technical - economic comparative

analysis on energy storage systems equipped with a hydrogen generation

installation, Journal of Power Technologies 96 (2) (2016) 92–100.

S. Lepszy, T. Chmielniak, P. Mo´nka, Storage system for electricity obtained

from wind power plants using underground hydrogen reservoir,

VI Konferencja Naukowo - Techniczna Energetyka Gazowa, Zawiecie

, 59-76.

A. Skorek-Osikowska, L. Bartela, J. Kotowicz, K. Dubiel, Use of a gas

turbine in a hybrid power plant integrated with an electrolyser, biomass

gasification generator and methana


  • There are currently no refbacks.