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Abstract

A new two-stage operation scheduling framework is proposed in this paper to optimize day-ahead (DA) operation of a re-
configurable smart distribution network (SDN). The SDN contains wind farm as uncertain renewable generation as well as
responsive demand and is operated by a distribution company (DisCo). The DisCo implements nodal hourly pricing as a price-
based demand response program (DRP) to modify consumers’ demand profile. Retail prices are determined in the first stage
of the proposed scheduling framework, while the best network topology and the bidding strategy of the DisCo in the DA energy
market are determined in the second stage. The two point estimate method (TPEM) is implemented in this paper to model
the intrinsic uncertainty of wind farm power generation and responsive demand. Finally, the effectiveness of the proposed
framework is evaluated in several case studies.

Keywords: Reconfiguration, Smart distribution network (SDN), Demand response, Retail pricing, Wind power generation,
Uncertainty

1. Introduction

1.1. Aim

Distribution network reconfiguration has recently attracted
a great deal of attention among power system researchers.
Power system operators may also find it necessary to con-
sider different possible configurations in operation schedul-
ing optimization of distribution networks. However, network
topology reconfiguration needs sophisticated communica-
tion and control infrastructures. Owing to advancements in
Smart Grid (SG) systems, future distribution networks will
be characterized by information and communication technol-
ogy (ICT) [14]. Moreover, these smart distribution networks
(SDNs) are equipped with advanced control infrastructures,
like remotely controlled switches (RCSs), to attain flexible
network topologies. On the other hand, benefiting from SG
technologies, DisCos as SDN operators see an opportunity
to implement the latest demand response programs (DRPs)
based on optimal retail electricity pricing [17, 8]. The aim of
this paper is to study the effect of network topology recon-
figuration on day-ahead (DA) operation scheduling of a SDN
with variable renewable generation and responsive demand.
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1.2. Literature Review

DA operation scheduling of a reconfigurable distribution
network in the presence of renewable energy resources
(RES) and responsive demand has been the focus of much
recent research [11, 13, 20, 10]. In Ref. [5] the reconfig-
uration problem in the presence of distributed wind power
generations has been studied. Microgrid load dispatch and
network reconfiguration problems were solved together in
Ref. [15]. In Ref. [12], a probabilistic network reconfiguration
model was proposed to find the best configuration for each
season, considering load and renewable generation uncer-
tainty. The best topology for each hour was determined in
Ref. [9] with the aim of minimizing power loss and switching
cost. Responsive loads were also considered in this paper
as an energy management option to reduce the operation
cost [9]. In Ref. [10] a stochastic model was presented to op-
timize DA operation of a reconfigurable microgrid with wind
turbines and dispatchable loads. Most studies in the context
of distribution network operation benefiting from topology re-
configuration such as Refs. [13, 10, 9] have addressed the
application of some initial DRPs, such as demand limiting
and demand shedding. However, recent advancements in
SG technologies means more sophisticated DRPs can be
implemented through innovative retail pricing mechanisms.
The concept of spot pricing of electricity was developed in
Ref. [18]. A comprehensive demand response model based
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on price elasticity of demand was derived in Ref. [4]. In
Ref. [6] optimal retail prices were determined based on the
responsive load model developed in Ref. [4] to maximize the
profit of an electricity retailer. The impact of optimal hourly
pricing mechanism on energy acquisition of a DisCo was
studied in Ref. [17]. In Ref. [8] a new DRP, i.e. hourly elec-
tricity pricing based on the location of load, was introduced
by the authors. In the proposed DRP scheme, the location
of load and price elasticity of demand, played the key roles
in determining retail electricity prices for different consumers
who participated in the program [8]. However, network topol-
ogy was supposed to remain unchanged during the optimiza-
tion period [8]. This may be an oversimplification in the ac-
tual power system operation and reduces the accuracy of
the proposed pricing scheme. Topology reconfiguration ca-
pability may increase the efficiency of the proposed DRP
scheme, especially in an environment embedded with un-
certain renewable generation. In addition, the uncertainties
associated with renewable power generation and responsive
demand were disregarded in Ref. [8].

1.3. Contributions

In this paper, optimal nodal hourly pricing is implemented
in a reconfigurable SDN with variable renewable generation
and responsive demand. A wind farm as an intermittent re-
newable energy source and a micro turbine as a dispatch-
able DG unit are located in the SDN. The SDN benefits from
battery energy storage (BES) and is operated by a DisCo.
The main contribution of this work is to propose a new two-
stage scheduling framework to maximize the profit of the
DisCo. In the first stage the proposed framework finds op-
timal retail electricity prices, while the best network topology
and the bidding strategy of the DisCo in the DA energy mar-
ket are determined in the second stage. The two point es-
timate method (TPEM) is also implemented in this paper to
model the intrinsic uncertainty of wind farm power generation
and responsive demand.

1.4. Paper organization

The rest of this paper is organized as follows. The pro-
posed probabilistic optimization framework as well as prob-
lem formulation are provided in Section 2. Section 3 presents
the two-stage solution procedure. Numerical studies and
simulation results along with some observations and discus-
sions are included in section 4, and finally section 5 con-
cludes the paper. The introduction contains a review of liter-
ature on the topic.

2. Probabilistic operation scheduling framework

In order to study the effects of topology reconfiguration on
the operation scheduling of a SDN with variable renewable
power generation and responsive demand, a two-stage prob-
abilistic framework is presented in this section. The SDN
contains a wind farm as stochastic renewable and a micro
turbine as dispatchable DG and is operated by a DisCo with

a natural monopoly. The wind farm and micro turbine are
assumed to be investor-owned and send their bids to the
DisCo via a communication system. In addition, the DisCo
is assumed to be a price taker and bids in the wholesale
market for energy sale/purchase at forecasted DA wholesale
prices. The main point of connection of the SDN to the up-
stream network/wholesale market is a distribution substation
transformer at the grid supply point. Responsive consumers
in the SDN schedule their consumption in response to retail
prices using an energy management system. Initial DA de-
mand and DA generation of the wind farm is estimated by
the DisCo based on weather forecasts and historical data,
which lies outside of the scope of this study. Moreover, the
DisCo receives BES and network data as well as estimated
DA wholesale market prices via a smart communication sys-
tem. Network data include the status of RCSs, scheduled
feeder outages, and possible network configurations as well
as distribution lines data. Input and output data as well as
stages of the proposed scheduling framework are shown in
Fig. 2. In the first stage, the proposed framework uses input
data to determine optimal retail prices based on loads speci-
fications. Other outputs, like the bidding strategy, are omitted
at this stage. These optimal retail prices are supposed to be
different at each node in each hour and are set to modify
the consumption pattern of responsive loads in a way that
reduces the energy supply cost of the DisCo while preserv-
ing the benefits of consumers. These optimal prices along
with other input data are fed to the second stage, which de-
termines the best hourly configuration and the bidding strat-
egy of the DisCo in the DA wholesale market. In order to
model the uncertain nature of wind power and responsive
demand, the two-point estimate method (TPEM) is applied
to the framework. The general formulation of the optimiza-
tion problem is presented as follows.

2.1. Objective function

The objective function is the DisCo’s profit, defined as the
difference between revenue and cost. The revenue func-
tion includes the income from selling power to the whole-
sale market and consumers. The sign of Πt

UN,i reflects the
sell/purchase status of power in time interval t. A negative
sign shows that the DisCo purchases power from the whole-
sale market, while a positive sign reflects selling power to
the wholesale market. The cost function consists of BES op-
eration cost, the cost of power purchase from DG units and
the DA wholesale market, and eventually the switching cost
of RCSs. The operational cost of BES is generally associ-
ated with its maintenance costs, and is assumed as a linear
function of the absolute of its charged or discharged power
at each hour, i.e. COS T t

BES ,i = ABES ,i×Πt
BES ,i+BBES ,i in which

ABES ,i and BBES ,i are positive. Objective function (expected
profit), expected revenue and expected cost are presented in
(1), (2) and (3), respectively.

max
λt

D,i, Πt
DG,i, Πt

BES ,i,Ch, Πt
BES ,i,Dch,

Πt
UN,i, Lt

DG,i, Lt
BES ,Ch, Lt

BES ,Dch

P = R − C (1)
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R =
∑

t

∑
i

(
Πt

D,i.λ
t
D,i

)
+ Πt

UN,i.λ
t
M

 (2) (2)

C =
∑

t

 ∑
DG

(
BDG,i.Π

t
DG,i.L

t
DG,i

)
+∑

S DG

(
BS DG,i.Π

t
S DG,i

)
+ COS T t

BES ,i


+COS TS w

(3)

in which the switching cost (COS TS w) is calculated as the
summation of hourly switching operation costs needed for
DA optimal topology reconfiguration.

2.2. Constraints

Four groups of constraints must be satisfied in the opti-
mization process. The first group includes model and wel-
fare constraints of responsive load. The second one in-
cludes technical constraints of the distribution network and
AC power flow. The third group includes security and ade-
quacy constraints. The last one contains constraints of dis-
patchable DGs and also characteristics and constraints of
BES.

2.2.1. Model and welfare constraints of responsive load
Responsive consumers in the SDN participate in DRPs

to reduce their electricity bills by adjusting their power con-
sumption. A comprehensive model of responsive demand
is derived in Ref. [4] based on price elasticity of demand as
follows.

t∏
D, i

=

t∏
D0 i


1+

et
D, i ·

[
λt

D, i−λD0
]

λD0

+
∑

h=1
h,t

et, h
D, i

[
λh

D, i−λD0
]

λD0

 (4)

Although demand responds to price signals based on the
model presented in (4), this response is limited by realistic
considerations. Moreover, in order for retail prices to be fair
towards both consumers and the DisCo, regulatory bodies
impose some regulatory restrictions.

Minimum and maximum demand limits. The minimum and
maximum consumption of Dth aggregated load in each time
interval can be presented as:

t∏
D, i,min

≤

t∏
D i

≤

t∏
D, i,max

(5)

Minimum energy consumption. Equation (6) represents
minimum daily energy consumption required by each con-
sumer:

24∑
t=1

Et
D, i ≥ Eday

D, i,min (6)

Retail price cap. In order to protect consumers against high
retail prices, a maximum limitation has to be considered as:

λt
D, i ≤ λ

t
max (7)

Limit on revenue from each consumer. To encourage con-
sumers to participate in the program, the maximum bill of
each consumer is set to be less than if DA wholesale prices
were directly sent to consumers. Although retail prices were
capped by (7), constraint (8) protects consumers against be-
ing offered relatively high prices at most hours of day by the
DisCo, aiming to increase the DisCo’s benefit. If β (payment
factor) is selected less or equal to 1 in (8), the benefits of the
DisCo and the consumers who participated in the program
are simultaneously derived.
(8)

24∑
t=1

t∏
D ,i

λt
D, i ≤ β ·

24∑
t=1

t∏
DM, i

λt
M (8)

2.2.2. Network constraints
Power flow equations:.

Πt
G,i − Πt

D,i =∑
j

∣∣∣V t
i

∣∣∣ ∣∣∣∣V t
j

∣∣∣∣ ∣∣∣∣Y t
i j

∣∣∣∣ cos
(
θi j + δt

j − δ
t
i

) (9)

Ψt
G,i − Ψt

D,i =∑
j

∣∣∣V t
i

∣∣∣ ∣∣∣∣V t
j

∣∣∣∣ ∣∣∣∣Y t
i j

∣∣∣∣ sin
(
θi j + δt

j − δ
t
i

) (10)

where Πt
G,i and Ψt

G,i are calculated as follow.

Πt
G, i = Πt

DG, i + Πt
S DG, i − Πt

UN, i
+ηDch.Π

t
BES , i,Dch − Πt

BES , i,Ch
(11)

Ψ t
G, i = Ψ t

UN, i + Ψ t
DG, i (12)

Bus voltage limit:.

Vmin
i ≤ V t

i ≤ Vmax
i (13)

Substation capacity limit:.

S t
UN ≤ S max

UN (14)

Feeder flow limits:.
S t

i j ≤ S max
i j (15)

2.2.3. Adequacy and security constraints
Supply-demand balancing constraints:.

∑
DG Πt

DG, i +
∑

S DG Πt
S DG, i + ηDch.Π

t
BES , i,Dch

−Πt
UN, i =

∑
D Πt

D, i + Πt
Loss + Πt

BES , i,Ch
(16)

Ψt
UN, i +

∑
DG

Ψt
DG, i =

∑
D

Ψt
D, i + Ψt

Loss (17)
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Reserve capacity:. Due to possible variations in wind farm
power generation and responsive demand, this is necessary
to ensure that enough capacity exists to meet the hourly de-
mand as well as maintaining a reserve margin. Thus, (γ%)
(e.g. 5% based on data given in table 4 of wind farm power
generation and (χ%) (e.g. 2% based on information given
in [7] about deviation in load demand forecast) of total hourly
demand is considered by DisCo as the reserve margin pro-
vided by dispatchable DGs as follows.∑

DG(Πt
DG, i,max − Πt

DG, i) + Πt
UN, i,max+

Πt
UN, i, B ≥ χ

∑
S DG Πt

S DG, i, B + γ
∑

D Πt
D, i

(18)

where Πt
UN, i,maxis calculated as follows:

Πt
UN, i,max =

√
(S max

UN, i)
2 − (Ψt

UN, i)
2 (19)

2.2.4. Constraints of DGs and BES
Dispatchable DGs constraints:. These constraints are con-
sidered to guarantee that the commitment of dispatchable
DG units respects the physical limitations of these units.
Constraints (20 )–(21) are considered to guarantee that the
power generated by DG units adhere to the respective ca-
pacity limits, minimum up/down times, and ramp rates re-
spectively.

Πt
DG,i ≤ Πt

DG,i,max.L
t
DG,i

Πt
DG,i ≥ Πt

DG,i,min.L
t
DG,i

(20)


∑MUT

h=1 Lt+h−1
DG, i ≥ MUPDG, i ∀Mt

DG, i = 1∑MDT
h=1 (1 − Lt+h−1

DG, i ) ≥ MDTDG, i ∀N t
DG, i = 1

Mt
DG, i − N t

DG, i = Lt
DG, i − Lt−1

DG, i
Mt

DG, i + N t
DG, i ≤ 1

(21)

Πt+1
DG, i − Πt

DG, i ≤ RUPDG, i

Πt
DG, i − Πt+1

DG, i ≤ RDNDG, i
(22)

BES characteristics and constraints:. The maximum
charge/discharge rate of a BES is limited by constraints (23)
and (24) respectively.

0 =≤

t∏
BES , i,Ch

≤

max∏
BES ,Ch

·Lt
BES ,Ch (23)

0 =≤

t∏
BES , i,Dch

≤

max∏
BES ,Dch

·Lt
BES ,Dch (24)

Constraint (25) ensures that the relationship between
charge/discharge binary variables are logical.

Lt
BES ,Ch + Lt

BES ,Dch ≤ 1the (25)

Equation (26) models the stored energy in a BES while con-
straint (27) ensures that this energy is within the upper and
lower capacity limits of the BES.

Et
BES , i = Et−1

BES , i+

ηCh × Πt
BES , i,Ch − Πt

BES , i,Dch
(26)

Emin
BEs ≤ Et

BES , i ≤ Emax
BES (27)

2.3. Uncertainty modeling of wind power and responsive de-
mand

The TPEM is known as an efficient means of handling un-
certainties with an acceptable level of simplicity and accu-
racy [21]. This approach only requires solving 2×m sce-
narios to obtain the behavior of m random variables [12].
Stochastic variables here are initial hourly demand and
wind farm power generation assumed as uncorrelated vari-
ables. These stochastic variables are modeled as zero-mean
normally-distributed random variables with a standard devia-
tion of σ [12].

In order to model the behavior of m random variables by
using the TPEM, suppose P : {p1, p2, ..., pl, ..., pm} is a ran-
dom variable with a mean value µ and standard deviationσ.
Z is a random quantity in function of P: Z = F(P). Each of the k
concentrations of the random variablesplis defined as a pair
composed of a locationpl, kand a weightwl, k. The location is
determined as follows.

pl, k = µpl + ξl, kσpl (28)

where ξl, k is the standard location of pl. The standard loca-
tions and weights are computed as:

ξl, 1 =
λl, 3

2 +

√
m +

(
λl,3

2

)2

ξl, 2 =
λl, 3

2 −

√
m +

(
λl,3

2

)2 (29)

and
wl, 1 = − 1

m
ξl, 2

ξl, 1−ξl, 2

wl, 2 = 1
m

ξl, 1

ξl, 1−ξl, 2

(30)

where λl, 3 denotes the skewness of:

λl, 3 =

E
[(

pl − µpl

)3
]

(
σpl

)3 (31)

In each time, one of the variables concentrations with the
means of other variables is taken into account and eventu-
ally the statistical information of the output variable are com-
puted.

Zl, k = F
(
pl, 1, pl, 2, ..., pl, k, ..., pm, k

)
(32)

E (Z) � E (Z) +
∑

k

wl, k · Zl, k (33)

The detailed procedure of the TPEM discussed in Ref. [21]
is illustrated in Fig. 1.

2.4. The solution method

2.4.1. First stage: Nodal hourly pricing
In the above section the proposed probabilistic optimiza-

tion framework is formulated as a MINLP problem. In the first
stage retail hourly prices are calculated as a part of the ob-
jective function with the aim of maximizing the DisCo’s profit.
These prices are not the same for all consumers and are
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Figure 1: Flowchart of the solution method
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determined based on load specifications. Although network
configuration is supposed to be fixed in this stage, difficul-
ties associated with solving the proposed MINLP problem in
a real size distribution system makes it inevitable to apply de-
composition algorithms, such as the BDT [16, 19]. This tech-
nique partitions the problem into two levels, including a mas-
ter and slave problem. Then it utilizes an iterative procedure
between these levels, aiming to find an optimal solution [19].
The master problem determines retail prices, disregarding
network constraints, whereas the slave problem deals with
network constraints. Other master problem solutions includ-
ing BES charge/discharge power, dispatchable DGs power
generation and power exchange with upstream network are
transferred to the slave problem. The constraints of the slave
problem check the feasibility of the master problem solutions
and return marginal data and dual values of these variables
to the master problem to be used in Benders cuts. Benders
cuts, master problem solutions and slave problem marginal
data are updated in each iteration. The iterative procedure
continues until marginal data go to zero and all hourly vari-
ables reach their optimal value. The objective function value
in this condition is maximum profit of the DisCo. This iterative
procedure is illustrated in Fig. 1 and details are discussed as
follows.

Master problem . The master problem objective function is
formulated as follows.

max
λt

D, i,Π
t
DG, i,Π

t
BES , i,Ch,Π

t
BES , i,Dch,

Πt
UN, i, L

t
DG, i, L

t
BES ,Ch, L

t
BES ,Dch

P −
∑

t

αt
S co (34)

Subject to constraints 5-8, 11-12, 14-27 and the Benders
cuts:

αt
S co ≥ α

t
n−1+∑

D κ
t
D, i, n−1

(
Πt

D, i − Π
t
D, i, n−1

)
+∑

DG κ
t
DG, i, n−1

(
Πt

DG, i − Π
t
DG, i, n−1

)
+κt

UN, i, n−1

(
Πt

UN, i − Π
t
UN, i, n−1

)
+

κt
BES ,Ch, n−1

(
Πt

BES ,Ch, i − Π
t
BES ,Ch, i, n−1

)
+κt

BES ,Dch, n−1

(
Πt

BES ,Ch, i − Π
t
BES ,Ch, i, n−1

)
(35)

where αt
S co is the subproblem cost and Π

t
D, i, n−1, Π

t
DG, i, n−1,

Π
t
UN, i, n−1, Π

t
BES , i,Ch, n−1 and Π

t
BES , i,Dch, n−1are solutions of

subproblem at iteration n-1. The first and second terms of
(34) represent the DisCo’s profit and feasibility costs of each
hourly subproblem respectively.

Subproblem . The subproblem checks the feasibility of the
master problem solutions using AC power flow. The objective
function presented in (36) minimizes the cost of deviations
from the master problem solutions in each time interval:

min
Πt

D, i,Π
t
DG, i,Π

t
BES , i,Ch,Π

t
BES , i,Dch,Π

t
UN, i∑

i rt
Π,UP, i + rt

Π,DN, i + rt
Ψ,UP, i + rt

Ψ,UP, i

(36)

wherert
Π,UP, i, rt

Π,DN, i, rt
Ψ,UP, i and rt

Ψ,UP, i are slack variables of
the optimization problem added to AC power flow equations
to make the subproblem feasible. Subproblem constraints in-
cluding (37 )–(39) check the feasibility of the master problem
solutions in all hours and generate marginal data and dual
values. These values update Benders cuts in each iteration
which in turn improves master problem solutions. This iter-
ative procedure goes on until the master problem solution is
feasible.

Πt
G, i − Πt

D, i + rt
Π,UP, i − rt

Π,DN, i =∑
j

∣∣∣V t
i

∣∣∣ ∣∣∣∣V t
j

∣∣∣∣ ∣∣∣∣Y t
i j

∣∣∣∣ cos
(
θi j + δt

j − δ
t
i

) (37)

Ψt
G, i − Ψt

D, i + rt
Ψ,UP, i − rt

Ψ,DN, i =∑
j

∣∣∣V t
i

∣∣∣ ∣∣∣∣V t
j

∣∣∣∣ ∣∣∣∣Y t
i j

∣∣∣∣ sin
(
θi j + δt

j − δ
t
i

) (38)

Πt
D, i = Π

t
D, i ↔ κt

D, i, n−1 ;
Πt

DG, i = Π
t
DG, i ↔ κt

DG, i, n−1 ;
Πt

UN, i = Π
t
UN, i ↔ κt

UN, i, n−1 ;
Πt

BES ,Ch, i = Π
t
BES ,Ch, i ↔ κt

BES ,Ch, i, n−1;
Πt

BES ,Dch, i = Π
t
BES ,Dch, i ↔ κt

BES ,Dch, i, n−1

(39)

whereΠ
t
D, i, Π

t
UN, i, Π

t
DG, i, Π

t
BES ,Ch, iand Π

t
BES ,Dch, iare the re-

sults of the master problem at the same iteration and κt
D, i, n−1,

κt
UN, i, n−1, κt

DG, i, n−1, κt
BES ,Ch, i, n−1 and κt

BES ,Dch, i, n−1are dual
variables associated with these optimal solution.

The optimization problem is implemented in GAMS soft-
ware, and SBB and CONOPT solvers are selected to solve
master and slave problems respectively [1]. The average
simulation time of the first stage is 10.02 seconds.

2.4.2. Second stage: Topology reconfiguration
The main objective of the optimization model in the sec-

ond stage is to find the best topology configuration among
different possible configurations in each hour. Optimal retail
prices determined in the first stage in addition to other input
data shown in Fig. 2 are fed to the second stage. Equa-
tions (40 )–(42) are used in the second stage to model and
optimize DA DisCo operation. In order to choose the best
network topology in each hour, equations (40 )–(42) are also
implemented in the model. In these equations a binary vari-
able (LLt

ii) as well as line data (Y, θ) are attributed to each
topology. When a topology binary variable is set to 1 by the
optimization program for each hour, the related SDN con-
figuration is used for power flow calculations and checking
constraints.

Y = Y1LLt
1 + Y2LLt

2 + Y3LLt
3 (40)

θ = θ1LLt
1 + θ2LLt

2 + θ3LLt
3 (41)

LLt
1 + LLt

2 + LLt
3 = 1 (42)

The optimization model in the second stage formulated as
a MINLP problem is implemented in GAMS software and
SBB solver is selected to solve it [1]. The average simula-
tion time of the second stage is 16.52 seconds.
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Figure 2: The proposed operation scheduling framework for a reconfigurable SDN
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Table 1: Characteristics of the stochastic DG

DG

no

Bus

no

∏min
S GD, i,

MW

∏max
S GD, i,

MW

BS DG, i,

$/MWh

1 14 0 11 48

Table 2: Characteristics of the BES

Ca-

pac-

ity,

MWh

∏max
Ch ,

MW

∏max
Dch ,

MW

ηCh,

ηDch

Initial

level,

MWh

ACh,

ADch,

$

BCh,

BDch,

$

C,

$

9 1.2 1.2 0.9 2 11 9 3

3. Numerical studies

3.1. Data and required assumptions

In this section the proposed optimization framework is im-
plemented on an 18-buses distribution network. The base
topology shown in Figs 3–5 a was extracted from the IEEE-
30 buses system by considering only the 33 kV networks [3].
In addition, two other topologies considered in this work were
constructed considering the base topology and are shown in
Figs 4 and 5. The DisCo operates a BES located at bus 7,
and the network is connected to the upstream network at bus
1 through a substation transformer. The cost function coeffi-
cients and other BES data are given in Table 2 and the sub-
station transformer capacity at bus 1 is assumed at 50 MVA.
Furthermore, a wind farm as stochastic DG is located at bus
14 while a micro turbine is considered as a dispatchable DG
unit at bus 11. The bid price of each DG is set based on its
levelized cost of electricity (LCOE). The LCOE is evaluated
on the basis of the capital cost, time of operation, mainte-
nance and operation cost and lifetime of the DG [3]. More-
over, the LCOE should take into account additional costs of
communication and control infrastructures installed to coor-
dinate the operation of different DGs in the DisCo. Dispatch-
able DG data as well as Stochastic DG data and its forecast
power generation are presented in Tables 3–4 respectively.

Three types of consumers—residential, commercial and
small industrial consumers—are connected to the system
buses. The consumers at each bus are assumed to be
the same type and are modeled as a single lumped load.
Self- and cross-price elasticities for all load types are shown
in Table 5, which is compatible with Ref. [4]. It should be
noted that a precise estimation of elasticity coefficients re-
quires a complex econometric procedure, which is not in the
scope of this paper. Table 6 presents different time intervals

Table 3: Characteristics of the dispatchable DG

DG

no

Bus

no

∏min
GD, i,

MW

∏max
GD, i,

MW

BS DG, i,

$/MWh

S UPDG, i,

$

S DNDG, i,

$

1 11 1 5 108 5 3

Table 4: DA generation forecast of the stochastic DG

Hour SDG1 (BUS 14), MW

Mean St. De

t=1, ..., 6 4 0.1

t=7, ..., 12 5 0.3

t=13, ..., 18 9 0.4

Table 5: Self- and cross-elasticities

Bus no Load Type Self Elasticity Cross Elasticity

2, 3, 4, 5 Residential -0.01 0.001

8, 9 Commercial -0.025 0.0025

6 Industrial -0.04 0.004

13 Industrial -0.05 0.005

15 Industrial -0.07 0.007

considered in this work. Fig. 6 shows DA hourly electricity
prices on a typical day (February 18 2014) obtained from the
wholesale electricity market data of Ontario, Canada [2]. The
base energy price is assumed as (101$/MWh) in all numeri-
cal studies, which is the average of wholesale market prices
during February 2014 [2]. Moreover, this price (101$/MWh)
is also assumed as the electricity rate in flat pricing. The
mean value of initial demand in each hour is given in Fig. 7.
The standard deviation of initial demand in each hour is sup-
posed to be 3% of its mean value. Furthermore, the maxi-
mum and minimum limits for elastic load demand are equal
to 130% and 70% of the initial demand forecast, respectively.
In addition, the minimum daily energy consumption of each
elastic load is assumed as 90% of its initial consumption and
the payment factor (β) is assumed to be 1.

3.2. Case study and discussion

In this section the proposed framework was applied to op-
timize the operation scheduling of a SDN with reconfigurable
topology. In addition, the TPEM was implemented to the op-
timization model in order to consider the uncertainty asso-
ciated with wind farm power generation and initial demand.
Therefore, all results are probabilistic in nature and are pre-
sented in the form of mean values. Moreover, the most re-
peated topology for each hour was determined as a sug-
gestion for the next day. The best SDN topology for each
hour determined by the optimization framework is presented

Table 6: Time intervals

Time intervals Hours

Off-peak 22–24 and 1–6

Mid-peak 11–16

On-peak 7–10 and 17–21
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Figure 3: The 18-bus distribution system. Topology T1 (The base topology)
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Figure 4: The 18-bus distribution system. Topology T2

in Table 7. Topology T2 was the one most often selected by
the framework during hours with high wind power genera-
tion. This is due to the fact that in this topology the line 2-14
facilitates grid integration of the wind farm at bus 11. During
hours with lower wind power penetration, topologies T1and
T3 were selected.

Optimal scheduling of the dispatchable DG unit is pre-
sented in Fig. 8. DG1 is “OFF” during hours 1-5 and 22-24
because wholesale market prices in these hours are lower
than the production cost of this unit. In fact, because of the
capability of DisCo to sell power to the wholesale market,
the generation pattern of DG units does not depend on the
demand profile but is determined based only on DA whole-
sale market prices. The amount of power exchange with the
wholesale market in each hour is presented in Fig. 9. The
DisCo purchases power from the wholesale market during
hours 7-12 and 19 to meet its demand. Moreover, the DisCo
prefers to purchase power from the wholesale market during
low-price hours, like 1-6 and 22-24. In contrast the DisCo
sells its surplus power to the wholesale market during high-
price hours, like 13-17 and 20-21, to increase its profit. As
seen from Fig. 10, the BES is charged during hours 1-2 when
wholesale market prices are low and is discharged during
hours 20-21 when wholesale market prices are at the high-
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Figure 5: The 18-bus distribution system. Topology T3

 

Figure 6: DA forecasted wholesale market prices

est values.
In order to show the effectiveness of optimal topology re-

configuration, the results are compared with the case of
fixed topology configuration from the technical and economic
points of view. Technical criteria including total line loss and
total voltage deviation

(∑
i
∑

t | v (i, t) − 1)
)

in systems’ buses
as well as the economic criterion (DisCo’s profit) are given
in Table 8. As can be observed, topology reconfiguration re-
duces total voltage deviation and total line losses, while the
DisCo’s profit is increased when optimal topology reconfigu-
ration is implemented in the network.

4. Conclusion

In this paper, a new two-stage operation scheduling frame-
work is presented to determine the best network topology for
a reconfigurable SDN in each hour. The SDN contains un-
certain renewable generation as well as responsive demand,
and is operated by a DisCo. Retail hourly prices for respon-
sive consumers are determined in the first stage of the pro-
posed framework. The second stage determines the best
network topology and the bidding strategy of the DisCo in
the DA energy market. Moreover, the TPEM is applied to
the framework to model the uncertainty associated with wind
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Figure 7: DA demand profile

power generation and responsive demand. The effective-
ness of the proposed scheduling framework has been vali-
dated through numerical studies. The results confirm that the
implementation of network topology reconfiguration in addi-
tion to price-based DRP improves technical and economic
criteria of SDN operation.

 

Figure 8: Optimal dispatch of DG1

 

Figure 9: Hourly power exchange with the wholesale energy market
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