Solid Oxide Electrolysis Cell co–methanation supported by Molten Carbonate Fuel Cell—a concept

  • Jaroslaw Milewski Warsaw University of Technology

Abstract

The paper presents a concept of coupling a Solid Oxide Electrolysis Cell with a Molten Carbonate Fuel Cell forco–electrolysis of H2O with CO2 for generating synthetic fuel (methane based) for an electricity storage applicationon a larger scale. The concept is focused on coal/natural gas fired power plants for upgrade as peak energystorage. MCFC anode and SOEC cathode are exposed to the same flow, SOEC produces hydrogen for MCFCand MCFC delivers CO2 for methanation processes. Both electrodes have compatible polarity, thus they can bedirectly connected by the current collector and there is no need to apply bipolar plates. On the other side, SOECwill release oxygen to the flue gases and MCFC will capture oxygen and carbon monoxide, thus at the outlet will bea flow with increased oxygen content and decreased carbon dioxide concentration. The concept requires detailedelectrochemical, chemical, and thermal simulations.

Author Biography

Jaroslaw Milewski, Warsaw University of Technology
Dr

References

[1] M. Farahnak, M. Farzaneh-Gord, M. Deymi-Dashtebayaz,
F. Dashti, Optimal sizing of power generation unit capacity in
ice-driven cchp systems for various residential building sizes,
Applied Energy 158 (2015) 203–219.
[2] J. Kotowicz, A. Skorek-Osikowska, . Bartela, Economic and
environmental evaluation of selected advanced power generation
technologies, Proceedings of the Institution of Mechanical
Engineers, Part A: Journal of Power and Energy 225 (3)
(2011) 221–232.
[3] A. Hesaraki, A. Halilovic, S. Holmberg, Low-temperature heat
emission combined with seasonal thermal storage and heat
pump, Solar Energy 119 (2015) 122–133.
[4] A. Chmielewski, S. Gontarz, R. Gumin´ski, J. Ma˛czak,
P. Szulim, Analysis of influence of operational parameters
on micro cogeneration system vibrations [analiza wpływu
parametrów eksploatacyjnych na drgania układu mikrokogeneracyjnego],
Przeglad Elektrotechniczny 92 (1) (2016) 45–53.
[5] L. Ramírez-Elizondo, G. Paap, Scheduling and control framework
for distribution-level systems containing multiple energy
carrier systems: Theoretical approach and illustrative example,
International Journal of Electrical Power and Energy Systems
66 (2015) 194–215.
[6] L. Romero Rodríguez, J. Salmerón Lissén,
J. Sánchez Ramos, E. Rodríguez Jara, S. Álvarez
Domínguez, Analysis of the economic feasibility and reduction
of a building’s energy consumption and emissions
when integrating hybrid solar thermal/pv/micro-chp systems,
Applied Energy 165 (2016) 828–838.
[7] S. Mondal, S. De, Transcritical CO2 power cycle - effects of
regenerative heating using turbine bleed gas at intermediate
pressure, Energy 87 (2015) 95–103.
[8] H. Wu, L.-J. Yang, J.-P. Yan, G.-X. Hong, B. Yang, Improving
the removal of fine particles by heterogeneous condensation
during wfgd processes, Fuel Processing Technology 145
(2016) 116–122.
[9] . Bartela, A. Skorek-Osikowska, J. Kotowicz, Integration of a
supercritical coal-fired heat and power plant with carbon capture
installation and gas turbine, Rynek Energii 100 (3) (2012)
56–62.
[10] D. McLarty, J. Brouwer, C. Ainscough, Economic analysis
of fuel cell installations at commercial buildings including regional
pricing and complementary technologies, Energy and
Buildings 113 (2016) 112–122.
[11] O. Corigliano, P. Fragiacomo, Technical analysis of hydrogenrich
stream generation through CO2 reforming of biogas by
using numerical modeling, Fuel 158 (2015) 538–548.
[12] X. Yang, F. Karnbach, M. Uhlemann, S. Odenbach, K. Eckert,
Dynamics of single hydrogen bubbles at a platinum microelectrode,
Langmuir 31 (29) (2015) 8184–8193.
[13] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an
internal combustion engine fuelled by natural gas operating
in distributed generation, Energy Procedia 14 (2012) 1478–
1483.
[14] K. Raj, S. Chan, Transient analysis of carbon monoxide transport
phenomena and adsorption kinetics in ht-pemfc during
dynamic current extraction, Electrochimica Acta 165 (2015)
288–300.
[15] A. Perna, M. Minutillo, E. Jannelli, Investigations on an advanced
power system based on a high temperature polymer
electrolyte membrane fuel cell and an organic rankine cycle
for heating and power production, Energy 88 (2015) 874–884.
[16] J. Milewski, M. Wolowicz, K. Badyda, Z. Misztal, 36 kw polymer
exchange membrane fuel cell as combined heat and
power unit, ECS Transactions 42 (1) (2012) 75–87.
[17] A. Buonomano, F. Calise, M. d’Accadia, A. Palombo, M. Vicidomini,
Hybrid solid oxide fuel cells-gas turbine systems for
combined heat and power: A review, Applied Energy 156
(2015) 32–85.
[18] X. Zhang, H. Liu, M. Ni, J. Chen, Performance evaluation
and parametric optimum design of a syngas molten carbonate
fuel cell and gas turbine hybrid system, Renewable Energy 80
(2015) 407–414.
[19] J. Kupecki, J. Jewulski, K. Badyda, Comparative study of biogas
and dme fed micro-chp system with solid oxide fuel cell,
Applied Mechanics and Materials 267 (2013) 53–56.
[20] A. Grzebielec, A. Rusowicz, M. Jaworski, R. Laskowski, Possibility
of using adsorption refrigeration unit in district heating
network, Archives of Thermodynamics 36 (3) (2015) 15–24.
[21] A. Haghighat Mamaghani, B. Najafi, A. Shirazi, F. Rinaldi, 4e
analysis and multi-objective optimization of an integrated mcfc
(molten carbonate fuel cell) and orc (organic rankine cycle)
system, Energy 82 (2015) 650–663.
[22] H. Huang, J. Li, Z. He, T. Zeng, N. Kobayashi, M. Kubota,
Performance analysis of a mcfc/mgt hybrid power system bifueled
by city gas and biogas, Energies 8 (6) (2015) 5661–
5677.
[23] M. Law, V.-C. Lee, C. Tay, Dynamic behaviors of a molten carbonate
fuel cell under a sudden shut-down scenario: The effects
on temperature gradients, Applied Thermal Engineering
82 (2015) 98–109.
[24] V. Nekrasov, A. Lystsov, O. Limanovskaya, N. Batalov,
M. Konopelko, Oxygen reduction on gold electrode in li2co3
/ k2co3 (62 / 38 mol electrolyte: Experimental and simulation
analysis, Electrochimica Acta 182 (2015) 61–66.
[25] I. Rexed, M. della Pietra, S. McPhail, G. Lindbergh, C. Lagergren,
Molten carbonate fuel cells for co2 separation and segregation
by retrofitting existing plants - an analysis of feasible operating
windows and first experimental findings, International
Journal of Greenhouse Gas Control 35 (2015) 120–130.
[26] R. Roshandel, M. Astaneh, F. Golzar, Multi-objective optimization
of molten carbonate fuel cell system for reducing co2
emission from exhaust gases, Frontiers in Energy 9 (1) (2015)
106–114.
[27] U. Damo, M. Ferrari, A. Turan, A. Massardo, Simulation of an
innovative startup phase for sofc hybrid systems based on recompression
technology: Emulator test rig, Journal of Fuel
Cell Science and Technology 12 (4).
[28] G. De Lorenzo, P. Fragiacomo, Energy analysis of an sofc system
fed by syngas, Energy Conversion and Management 93
(2015) 175–186.
[29] M. Ranaweera, J.-S. Kim, In-situ temperature sensing of sofc
during anode reduction and cell operations using a multijunction
thermocouple network, Vol. 68, 2015, pp. 2637–2644.
[30] M. Ferrari, Advanced control approach for hybrid systems
based on solid oxide fuel cells, Applied Energy 145 (2015)
364–373.
[31] P. Polverino, C. Pianese, M. Sorrentino, D. Marra, Modelbased
development of a fault signature matrix to improve solid
oxide fuel cell systems on-site diagnosis, Journal of Power
Sources 280 (2015) 320–338.
[32] J. Qian, J. Hou, Z. Tao, W. Liu, Fabrication of (sm, ce)o2-
interlayer for yttria-stabilized zirconia-based intermediate temperature
solid oxide fuel cells, Journal of Alloys and Compounds
631 (2015) 255–260.
[33] V. Suboti´c, C. Schluckner, J. Mathe, J. Rechberger,
H. Schroettner, C. Hochenauer, Anode regeneration follow-
ing carbon depositions in an industrial-sized anode supported
solid oxide fuel cell operating on synthetic diesel reformate,
Journal of Power Sources 295 (2015) 55–66.
[34] A. Majedi, A. Abbasi, F. Davar, Green synthesis of zirconia
nanoparticles using the modified pechini method and characterization
of its optical and electrical properties, Journal of Sol-
Gel Science and Technology 77 (3) (2016) 542–552.
[35] W. Budzianowski, Modelling of co2 content in the atmosphere
until 2300: Influence of energy intensity of gross domestic
product and carbon intensity of energy, International Journal
of Global Warming 5 (1) (2013) 1–17.
[36] S. Butti, G. Velvizhi, M. Sulonen, J. Haavisto, E. Oguz Koroglu,
A. Yusuf Cetinkaya, S. Singh, D. Arya, J. Annie Modestra,
K. Vamsi Krishna, A. Verma, B. Ozkaya, A.-M. Lakaniemi,
J. Puhakka, S. Venkata Mohan, Microbial electrochemical
technologies with the perspective of harnessing bioenergy:
Maneuvering towards upscaling, Renewable and Sustainable
Energy Reviews 53 (2016) 462–476.
[37] S.-Y. Wu, C.-H. Lin, J.-J. Ho, Density-functional calculations of
the conversion of methane to methanol on platinum-decorated
sheets of graphene oxide, Physical Chemistry Chemical
Physics 17 (39) (2015) 26191–26197.
[38] G. Guandalini, S. Campanari, Wind power plant and powerto-
gas system coupled with natural gas grid infrastructure:
Techno-economic optimization of operation, Vol. 9, 2015.
[39] G. Gahleitner, Hydrogen from renewable electricity: An international
review of power-to-gas pilot plants for stationary
applications, International Journal of Hydrogen Energy 38 (5)
(2013) 2039–2061.
[40] V. N. Nguyen, Q. Fang, U. Packbier, L. Blum, Long-term tests
of a jülich planar short stack with reversible solid oxide cells in
both fuel cell and electrolysis modes, International Journal of
Hydrogen Energy 38 (11) (2013) 4281–4290.
[41] W. Becker, R. Braun, M. Penev, M. Melaina, Production of
fischer–tropsch liquid fuels from high temperature solid oxide
co-electrolysis units, Energy 47 (1) (2012) 99–115.
[42] X. Sun, M. Chen, S. H. Jensen, S. D. Ebbesen, C. Graves,
M. Mogensen, Thermodynamic analysis of synthetic hydrocarbon
fuel production in pressurized solid oxide electrolysis
cells, international journal of hydrogen energy 37 (22) (2012)
17101–17110.
[43] C. Stoots, J. O’Brien, J. Hartvigsen, Results of recent high
temperature coelectrolysis studies at the idaho national laboratory,
International Journal of Hydrogen Energy 34 (9) (2009)
4208–4215.
[44] H. Er-rbib, C. Bouallou, Methanation catalytic reactor,
Comptes Rendus Chimie 17 (7) (2014) 701–706.
[45] C. M. Stoots, J. E. O’Brien, K. G. Condie, J. J. Hartvigsen,
High-temperature electrolysis for large-scale hydrogen production
from nuclear energy–experimental investigations, International
Journal of Hydrogen Energy 35 (10) (2010) 4861–
4870.
[46] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar,
D. Stolten, Power to gas: Technological overview, systems
analysis and economic assessment for a case study in germany,
International journal of hydrogen energy 40 (12) (2015)
4285–4294.
[47] K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated
gasification hybrid power systems, Rynek Energii (3) (2010)
74–79.
[48] J. Milewski, J. Lewandowski, A. Miller, Reducing co2 emissions
from a coal fired power plant by using a molten carbonate
fuel cell, in: ASME Turbo Expo 2008: Power for Land, Sea,
and Air, American Society of Mechanical Engineers, 2008, pp.
389–395.
Published
2016-04-04
How to Cite
MILEWSKI, Jaroslaw. Solid Oxide Electrolysis Cell co–methanation supported by Molten Carbonate Fuel Cell—a concept. Journal of Power Technologies, [S.l.], v. 96, n. 1, p. 8--14, apr. 2016. ISSN 2083-4195. Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/821>. Date accessed: 28 mar. 2024.
Section
Fuel Cells and Hydrogen

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.