The ignition phenomenon of gases—part I: the experimental analysis—a review

Wojciech Uchman, Sebastian Werle


Ignition has a significant impact on the efficiency of the combustion process. Spark ignition is the most commonly used
method and is characterized by two important parameters: minimum ignition energy and quenching distance. This paper
presents a review of various ways ahead in experimental investigation in the area. We focus on the conditions influencing
the experiments and estimation of the minimum ignition energy. The main issues in previous experimental studies are:
construction of the ignition apparatus, spark energy estimation and the statistical nature of the phenomenon. A summary of
the research conditions data is presented.

Full Text:



A. Kowalewicz, Podstawy procesów spalania, Wydawnictwa Naukowo-

Techniczne, 2000.

S. Essmann, D. Markus, U. Maas, Investigation of ignition by low energy

capacitance sparks: Paper p3-45, in: Proceedings of the European

Combustion Meeting, 2013.

F. Belles, C. Swett, Ignition and flammability of hydrocarbon fuels".

naca report 1300.

R. Maly, M. Vogel, Initiation and propagation of flame fronts in lean ch4-

air mixtures by the three modes of the ignition spark, in: Symposium

(International) on Combustion, Vol. 17, Elsevier, 1979, pp. 821–831.

S. A. Sulaiman, M. Minhat, Development of a spark electrode ignition

system for an explosion vessel, World Academy of Science, Engineering

and Technology, International Journal of Mechanical, Aerospace,

Industrial, Mechatronic and Manufacturing Engineering 5 (12) (2011)


M. Ngo, Determination of the minimum ignition energy (mie) of premixed

propane/air, Master’s thesis, The University of Bergen (2009).

J. Moorhouse, A. Williams, T. Maddison, An investigation of the minimum

ignition energies of some c1 to c7 hydrocarbons, Combustion

and flame 23 (2) (1974) 203–213.

R. Eckhoff, M. Ngo, W. Olsen, On the minimum ignition energy (mie)

for propane/air, Journal of hazardous materials 175 (1-3) (2010) 293–

J. E. Shepherd, J. C. Krok, J. J. Lee, Spark ignition energy measurements

in jet a.

M. Kono, K. Hatori, K. Iinuma, Investigation on ignition ability of composite

sparks in flowing mixtures, in: Symposium (International) on

Combustion, Vol. 20, Elsevier, 1985, pp. 133–140.

M. Kono, S. Kumagai, T. Sakai, The optimum condition for ignition of

gases by composite sparks, in: Symposium (International) on Combustion,

Vol. 16, Elsevier, 1977, pp. 757–766.

Y. Ko, R. Anderson, V. S. Arpaci, Spark ignition of propane-air mixtures

near the minimum ignition energy: Part i. an experimental study.

S. Bane, J. Shepherd, E. Kwon, A. Day, Statistical analysis of electrostatic

spark ignition of lean h2/o2/ar mixtures, International journal of

hydrogen energy 36 (3) (2011) 2344–2350.

S. P. M. Bane, Spark ignition: experimental and numerical investigation

with application to aviation safety, Ph.D. thesis, California Institute of

Technology (2010).

B. Lewis, Combustion, Flames and Explosion of Gases.

R. Ono, M. Nifuku, S. Fujiwara, S. Horiguchi, T. Oda, Minimum ignition

energy of hydrogen–air mixture: Effects of humidity and spark duration,

Journal of Electrostatics 65 (2) (2007) 87–93.

U. Pfahl, M. Ross, J. Shepherd, K. Pasamehmetoglu, C. Unal,

Flammability limits, ignition energy, and flame speeds in h2–ch4–nh3–

n2o–o2–n2 mixtures, Combustion and Flame 123 (1-2) (2000) 140–

Astm e582-07, standard test method for minimum ignition energy and

quenching distance in gaseous mixtures.

E. Litchfield, M. Hay, T. Kubala, J. Monroe, Minimum ignition energy

and quenching distance in gaseous mixtures, Report of Investigations

L. G. Britton, K. L. Cashdollar, W. Fenlon, D. Frurip, J. Going, B. K.

Harrison, J. Niemeier, E. A. Ural, The role of astm e27 methods in

hazard assessment part ii: Flammability and ignitability, Process safety

progress 24 (1) (2005) 12–28.

T. Langer, G. Gramse, D. Möckel, U. von Pidoll, M. Beyer, Mie experiments

and simultaneous measurement of the transferred charge–

a verification of the ignition threshold limits, Journal of Electrostatics

(1) (2012) 97–104.

J. Marshall, The quenching distances and minimum ignition energies

of h 2 o 2+ h 2 o vapour mixtures, Transactions of the Faraday Society

(1959) 288–298.

S. Coronel, R. Mevel, S. Bane, J. Shepherd, Experimental study of

minimum ignition energy of lean h2-n2o mixtures, Proceedings of the

Combustion Institute 34 (1) (2013) 895–902.

A. Wähner, G. Gramse, T. Langer, M. Beyer, Determination of the minimum

ignition energy on the basis of a statistical approach, Journal of

Loss Prevention in the Process Industries 26 (6) (2013) 1655–1660.

S. Zhong, N. Miao, Q. Yu, W. Cao, Energy measurement of spark discharge

using different triggering methods and inductance loads, Journal

of Electrostatics 73 (2015) 97–102.

U. von Pidoll, E. Brzostek, H.-R. Froechtenigt, Determining the incendivity

of electrostatic discharges without explosive gas mixtures, IEEE

Transactions on Industry Applications 40 (6) (2004) 1467–1475.

Astm e681-09, standard test method for concentration limits of

flammability of chemicals (vapors and gases).

Eropean standard: Determination of explosion limits of vapors and

gases, en1839.

Astm e918-83(2005), standard practice for determining limits of

flammability of chemicals at elevated temperature and pressure.

S. Liao, Q. Cheng, D. Jiang, J. Gao, Experimental study of flammability

limits of natural gas–air mixture, Journal of hazardous materials

(1-3) (2005) 81–84.

G. De Smedt, F. De Corte, R. Notele, J. Berghmans, Comparison of

two standard test methods for determining explosion limits of gases at

atmospheric conditions, Journal of hazardous materials 70 (3) (1999)


A. Takahashi, Y. Urano, K. Tokuhashi, S. Kondo, Effect of vessel size

and shape on experimental flammability limits of gases, Journal of hazardous

materials 105 (1-3) (2003) 27–37.

E. Brandes, E. A. Ural, Towards a global standard for flammability

determination, in: Proceedings of the 42nd annual loss prevention

symposium–Global safety congress, paper 2E, April 6, Vol. 10, 2008.

R. Tschirschwitz, V. Schröder, E. Brandes, U. Krause, Determination

of explosion limits–criterion for ignition under non-atmospheric conditions,

Journal of Loss Prevention in the Process Industries 36 (2015)


S. Moffett, S. Bhanderi, J. Shepherd, E. Kwon, Investigation of statistical

nature of spark ignition, in: 2007 Fall Meeting of theWestern States

Section of the Combustion Institute, Livermore, CA October, 2007, pp.


S. P. Bane, J. L. Ziegler, J. E. Shepherd, Investigation of the effect of

electrode geometry on spark ignition, Combustion and Flame 162 (2)

(2015) 462–469.

J. J. Lee, J. E. Shepherd, Spark ignition measurements in jet a: part ii.

J. D. Colwell, A. Reza, Hot surface ignition of automotive and aviation

fluids, Fire Technology 41 (2) (2005) 105–123.

S. Bane, J. Ziegler, P. Boettcher, S. Coronel, J. Shepherd, Experimental

investigation of spark ignition energy in kerosene, hexane, and hydrogen,

Journal of Loss Prevention in the Process Industries 26 (2)

(2013) 290–294.


  • There are currently no refbacks.