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Abstract

There are several methods for generating scenarios in stochastic programming. With extensive historical data
records, one possibility is to represent the probability distribution of the uncertain data using a statistical model
suitable for sampling. This method is especially useful for handling uncertain data that develops over time by
means of time series analysis. In this paper a time series model relevant to the short-term management of hydro-
power systems is proposed. This further illustrates the abilities of the models to capture developments in uncertain
data over time. To demonstrate the validity of this model, results from the Nordic power exchange—Nord Pool—and
a Norwegian power plant are presented.
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1. Introduction

In the short-term management of a hydro-power
plant, the uncertainty of the future surroundings poses
a major challenge. In many respects, uncertainty of the
inflows to the plant reservoirs is essential. Moreover,
uncertainty with respect to electricity demand has in
the past been of vital importance in the traditional set-
ting. Demand uncertainty, however, has become less
prominent with the deregulation of electricity markets,
as a plant is no longer obligated to satisfy demand,
but can resort to market exchange. Exchange through
short-term markets has called for profit maximization,
and market price uncertainty has become highly rele-
vant. Reservoir inflow uncertainty mainly stems from
non-anticipated precipitation and snow melt. Market
price uncertainty is driven by demand and supply [1–
3].

Demand uncertainty is mostly caused by tempera-
ture unpredictability and unpredicted customer behav-
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ior, whereas supply uncertainty may be due to unex-
pected failures. Nevertheless, a common feature of
inflows and prices is that current observations show
strong dependencies on past observations, and there-
fore the stochastic processes of inflows and prices can
be handled by means of time series analysis. The time
series analysis serves to gain insight into the empiri-
cal time series, to model the underlying stochastic pro-
cesses and the development of data over time in par-
ticular, and to understand future data values. For mod-
eling uncertainty in electricity prices and water stream-
flows, there are several frameworks in the fields of en-
gineering, economics and statistics. Engineering ap-
proaches include bottom-up models for power systems
and neural networks for the modeling of hydrological
processes. Statistical methods most notably embrace
time series analysis, possibly combined with other sta-
tistical tools. Finally, econometric approaches to ana-
lyzing time series have mostly been developed to ana-
lyze top-down models such as aggregated models for
electricity prices [4–7].

One of the most common time series models is the
ARMA model and its variants; for instance the inte-
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grated ARMA model, the fractional integrated ARMA
model, the seasonal ARMA model, the vector ARMA
model, the transfer model and the contemporaneous
model, the ARCH and the GARCH models, some of
which will be discussed in this paper.

2. The Proposed Price Forecast Strategy

2.1. The proposed data model

The available historical price series data to forecast the
24 hourly prices of day d is denoted by Ph: h=1,. . . ,T .
This series includes historical data up to hour 24 of day
d − 1. The value of T ranges usually from 168 (1 week)
to 1,344 (2 months). The ARIMA technique works as
follows. Use a specific ARIMA model of each one of
the constitutive series to forecast its 24 future values for
day d. An ARIMA model is then used to forecast hours
T + 1 to T + 24 for each one of the constitutive series
ah, bh, ch, and dh; resulting is estimated series aest

h , best
h ,

cest
h , and dest

h ; h. The standard statistical methodology
to construct an ARIMA model includes the following.

Step 0 A class of models is formulated assuming
certain hypotheses.

Step 1 A model is identified for the series consid-
ered.

Step 2 The parameters of the model are esti-
mated.

Step 3 If the hypotheses of the model are vali-
dated, the procedure continues in Step 4; other-
wise, the procedure continues in Step 1 to refine
the model.

Step 4 The model is used for forecasting.

These steps are briefly explained below.

Model Selection (Step 0) . The proposed general
ARIMA model takes the form

φ(B)Ph = c + θ(B)εh (1)

where Ph is the price at hour h and εh is the error
term. Polynomials φ(B) and θ(B) are functions of the
back-shift operator B (observe that Bs

Ph=Ph − s). That
is, φ(B)Ph = Ph − φ1Ph−1 − φ2Ph−2 − ... − φnF Ph−nF−,
and φk(k = 1, ..., nF) are polynomial coefficients, and
θ(B)εh = εh − θ1εh−1 − θ2εh−2 − ... − θnTεh−nT , and
θk(k = 1, . . . , nT ) are polynomial coefficients.

The number of terms of the polynomial functions
φ(B)and θ(B), nF and nT , respectively, depends on the
time series under analysis [8].
Note that including factors of the form allows one to take
into account appropriately the seasonality effects. Fi-
nally, certain hypotheses on the error terms are needed
to ensure the effectiveness of the predictions.

Model identification (Step 1). The target of this step is
to identify which polynomial parameters should be es-
timated. The initial selection is based on the obser-
vation of the autocorrelation and partial autocorrelation
plots [9]. Further refinement of the selection is based
on physical knowledge and on engineering judgment.

Polynomial parameter estimation (Step 2). Once the
parameters of the polynomials different from 0 have
been identified (through plot observation, physical
knowledge and engineering judgment), these param-
eters should be estimated. The estimation procedure
is based on available historical data. Good estimators
are usually found assuming that the data constitute ob-
servations of a stationary time series and maximizing
the likelihood function with respect to the polynomial
parameters. Good estimations can be obtained using
commercial software, such as [10].

Validation of model hypotheses (Step 3). In this step,
a diagnosis check is used to validate the model as-
sumptions. If the estimated model is appropriate, then,
the residuals (actual prices minus predicted prices)
should behave in a manner consistent with the model.
Residuals must satisfy the requirements of a white
noise process: zero mean, constant variance, un-
correlation and normal distribution. If the hypotheses
on the residuals are validated, then the corresponding
model can be used to forecast prices and this step con-
cludes successfully. Otherwise, the residuals contain
a certain structure that should be analyzed to refine the
model, and the procedure continues in Step 1. To re-
fine the model a careful inspection of the autocorrela-
tion and partial autocorrelation plots of the residuals is
advisable.

Actual prediction (Step 4). In this step, the correspond-
ing model from Step 2 is used to predict future values of
prices, typically 24 hours ahead. It should be noted that
prediction quality deteriorates as the predicted hour in-
creases, i.e., the error of the estimate of hour 24 is typ-
ically greater than the error of the estimate of hour 1.
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Figure 1: Hourly day-ahead market prices

2.2. Day-ahead market prices

The recent tendency to restructure and deregulate
electricity markets has stimulated most power produc-
ers to shift the objective from cost minimization and de-
mand satisfaction to profit maximization alone, which
has made the behavior of electricity prices of utmost
importance. In the short term, power producers may
participate in spot markets, such as the day-ahead mar-
ket for disposing of physical production. To participate
in the day-ahead market, bids must be submitted a day
in advance, as the name suggests. The market cannot
clear and the clearing prices of the following day can-
not be announced until afterwards. The clearing prices,
also referred to as day-ahead market prices, are there-
fore uncertain at the time of bidding [11, 12].
Model identification: To identify an appropriate model,
the first step is to detect seasonalities. As day-ahead
market prices are partly driven by electricity demand,
which exhibits a daily and a weekly pattern, both daily
and weekly periodic behavior is to be expected. This is
supported by the fact that the day-ahead market clears

Figure 2: Autocorrelation functions for day-ahead market prices

every day of the week except at the weekend. The peri-
odicities are visible from Fig. 1a. The class of proposed
models provides a base for identifying a model.
A non-constant mean indicates non-stationarity of the
time series data. This is further justified by empirical
autocorrelations that decay very slowly to zero. Factors
(1 − B), (1 − B24) and (1 − B168) are included in order to
stabilize the mean, (1 − B24) and (1 − B168) to remove
seasonality, and the process of differences can then be
accepted as being stationary, cf. Fig. 1b. Experiments
were made with a logarithmic transformation to stabilize
the variance. However, the best results were obtained
without this transformation. The original process can
therefore be described by a SARIMA model. Inspecting
the empirical autocorrelation and partial autocorrelation
functions, the order of the process of differences can be
determined. The functions are shown in Figs 2. The au-
tocorrelations corresponding to the lags 1, 2, 3, ... give
an indication of an ARMA (2, 2) process. The autocor-
relations of the lags 24, 48, 72, ... show evidence of an
MA (2) process, as the lagged-24k autocorrelations are
zero for k>2 and the partial autocorrelation function is
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Table 1: Maximum likelihood estimates for day-ahead market prices

Parame-
ter

φ1 φ2 γ1 γ2 γ24 γ25

Esti-
mate

0.30 0.34 0.36 0.55 -
0.05

0.73

Parame-
ter

γ26 γ47 γ48 γ49 γ168 σ

Esti-
mate

−0.07 0.05 0.17 0.036 0.99 5.12

exponentially decreasing. Finally, the autocorrelations
of the lags 168, 336, 504, ... are indications of anMA (1)
process, as the lagged-168k autocorrelations are zero
for k>1 and the partial autocorrelation function is ex-
ponentially decreasing. Although not clearly visible in
Fig. 2a, the ARMA (2,2) process causes the autocor-
relation function to peak in the neighborhood of the lag
24, 48, 72, ... and the MA (2) process causes it to peak
at the lags 144, 192, 312, 360, 480, 528. The initial
proposal of a model is

(1 − φ1B − φ2B2)(1 − B)(1 − B24)(1 − B168)εh =

(1 − γ1B − γ2B2)(1 − γ24B24 − γ48B48)(1 − γ168B168)εh, t ∈ Z

Inspecting the autocorrelation function and the partial
autocorrelation function of the residuals, the model can
be further refined to

(1 − φ1B − φ2B2)(1 − B)(1 − B24)(1 − B168)εh =

(1 − γ1B − γ2B2)(1 − γ23B23 − γ24B24 − γ25B25

−γ47B47 − γ48B48 − γ49B49)(1 − γ168B168)εh, t ∈ Z

The model is an extension of those of the preced-
ing sections. It is, nevertheless, sufficiently general to
include the main characteristics of day-ahead market
prices.

3. Numerical Results

The model is an extension of those of the preced-
ing sections. It is, nevertheless, sufficiently general to
include the main characteristics of day-ahead market
prices. Parameter estimation: Parameter estimates are
obtained by the use of maximum likelihood estimation.
Estimates based on data of the model identification pe-
riod can be found in Table 1.
To validate the model, the assumption of a white noise
process on the residuals must be confirmed. A plot of
the residuals is given in Fig. 3a. It should be clear that

Table 2: Weekly forecast errors for day-ahead market prices

Week 41 42 43 44 45

MPE 0.71 0.33 0.08 0.12 0.15
MAPE 3.11 1.34 2.54 2.44 2.32
MSE 65.66 23.45 54.34 43.67 45.65

Week 46 47 48 49 50

MPE 0.23 0.42 0.45 0.22 0.16
MAPE 1.34 1.44 1.76 2.56 2.64
MSE 31.55 42.56 34.56 38.76 45.80

Table 3: Weekly descriptive statistics for day-ahead market prices

Week 41 42 43 44 45

Simu-
lation

Mean
Value

222.5 234.6 243.3 256.4 231.4

Std.
dev.

16.4 15.7 14.6 16.7 11.2

Real Mean
Value

223.2 221.0 225.2 234.5 231.3

Std.
dev.

11.2 10.3 12.4 13.2 13.4

Week 46 47 48 49 50

Simu-
lation

Mean
Value

225.3 226.4 231.4 243.5 265.7

Std.
dev.

13.2 14.2 12.6 11.2 11.6

Real Mean
Value

221.2 224.2 225.6 226.7 226.1

Std.
dev.

12.4 10.8 11.3 11.5 12.6

the mean value can be assumed to be zero and that
the variance appears to be constant. Furthermore, the
autocorrelation and partial autocorrelation functions of
the residuals, cf. Figs. 3b and 3c, are both close to zero
as is the case for a white noise process. The Ljung-Box
statistics back up the fit of the model.
Before using forecasts and simulations as tools for plan-
ning purposes, both procedures are suitable for further
validation of the model. Out-of-sample tests are per-
formed and, hence, the model is tested on the data of
the validation period by forecasting and simulating into
this period.
The forecast errors of the validation period, i.e., weeks
41–50 or hours 6721–8400, are reported in Table 2.
The mean percentual error (MPE), mean absolute per-
centual error (MAPE) as well as the mean square error
(MSE) are displayed on a weekly basis. It should be re-
marked that the estimation of the validation period has
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been conducted on a 24-hour basis using an adaptive
approach, cf. Contreras et al. (2003) and Nogales et al.
(2002). The estimation of the first 24 hours, i.e., hours
6721–6744, is based on data of hours 1–6720.
Moving the time window 24 hours, the estimation of
the next 24 hours, i.e., hours 6745–6768, is based on
data of hours 24–6744 etc. The forecast errors are
seen to be rather small and therefore the model is suit-
able for forecasting. Descriptive statistics for a sim-
ulation of 1000 samples are shown in Table 3 along
with the same information on the real observations of
the validation period. Concerning the preservation of
the descriptive statistics, the mean value is well pre-
served, whereas the standard deviation is generally
over-estimated. Forecast and simulation: Starting from
the end of the validation period, forecasts and simula-
tions can be generated further into the future. As an
example of a short-term use of the procedures, hourly
prices are forecast and simulated a week ahead, i.e.,
into week 51. A plot of the forecasts and the real obser-
vations can be found in Fig. 4a. Moreover, the forecast
and its confidence intervals are plotted in Fig. 4b. Ex-
amples of a few simulated sample paths are displayed
in Fig. 4c.

3.1. Reservoir inflows

As water inflows to hydro reservoirs are often highly
uncertain, the forecasting or simulation of future val-
ues is crucial in the short-term planning of hydro-power
plants. In the management of reservoirs, the schedul-
ing of water releases depends among other things on
the current reservoir levels. Water releases in turn af-
fect unit commitment and production level decisions,
which makes knowledge of future reservoir inflows very
valuable. Early applications of the ARMA framework to
forecast and simulate stream-flows can be found in [8].
For the ARMA time series analysis of water inflows
to reservoirs, the data consists of hourly observations
from the same hydro-power plant located in the vicinity
of Trondheim, Norway and run by the company Trøn-
derEnergi. The data dates back to 2004, which is again
divided into a model identification period of 40 weeks
and a model validation period of 10 weeks. Typically,
even smaller hydro-power plants consist of more than
one reservoir. Therefore, it is highly relevant to con-
sider multiple reservoir inflow series. Inflows to different
reservoirs may stem from the same stream or from dif-
ferent streams. Here, we consider two reservoir inflow
series from two different streams and initially handle the
series individually. We show a model for one of the in-

flow series should be fitted, as fitting the other may be
done in a similar fashion. The first inflow series cor-
responds to a reservoir named Samsjøen, the second
inflows series to H◦aen.
Model identification: Consider the inflow to Samsjøen.
The data does not immediately disclose any obvi-
ous short-term seasonalities of the reservoir inflows.
Hence, the starting point of model identification is sta-
tionarity. Highly non-constant mean value and variance
reveal non-stationarity of the time series data, which
is further verified by slowly decreasing empirical auto-
correlations. By experimenting with logarithmic trans-
formation and differences, the inclusion of factor (1− B)
was found most suitable in obtaining stationarity. In par-
ticular, the autocorrelation functions decreased more
quickly without the logarithmic transformation. Hence,
an appropriate model should be found within the class
of ARIMA models. The original empirical time series
and the series of differences are displayed in Fig. 5.
The model is validated by testing the assumption of
a white noise process on the residuals and is confirmed
by the behavior of the autocorrelation and partial auto-
correlation functions as well as by the Ljung-Box statis-
tics, none of which are displayed here.
Out-of-sample testing: Further validation of the model
is based on forecasts and simulations. Again, we do
out-of-sample testing. Forecast errors are shown in Ta-
ble 4. We find forecasts to be useful for high inflow
weeks, i.e., weeks 41 and 45–50. However, for low in-
flow weeks, i.e., weeks 42–44, the forecasts are rather
poor. The descriptive statistics of the simulations, cf.
Table 5, show that the mean is more or less preserved,
whereas the standard deviation is highly overestimated.
Forecast and simulation: With the validated model at
hand, short-term forecasts and simulations of hourly in-
flows can be made. Plots of the forecast and the real
data as well as the forecast and its corresponding con-
fidence interval a week ahead are shown in Fig. 6a and
6b. Examples of a few simulated sample paths are
shown in Fig. 6c.

4. Conclusion

In this paper a time series model relevant to the short-
term management of hydro-power systems is pro-
posed. The results obtained illustrate the ability of
ARMA time series models to forecast and simulate
hourly day-ahead electricity prices and reservoir in-
flows. As indicated, forecasts and simulations are suit-
able as input for optimization problems such as deter-
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Table 4: Weekly forecast errors for reservoir inflows

Week 41 42 43 44 45

MPE 15.47 15.09 14.84 14.88 14.91
MAPE 15.53 13.76 109.3 78.54 14.74
MSE 30.01×106 12.32×106 18.69×106 8.02×106 10×106

Week 46 47 48 49 50

MPE 0.75 0.94 0.97 0.74 0.68
MAPE 9.57 9.67 9.99 10.79 10.87
MSE 5.21×106 16.22×106 8.22×106 12.42×106 19.46×106

Table 5: Weekly descriptive statistics for reservoir inflows

Week 41 42 43 44 45

Simulation Mean Value 10046.5 6546.3 10067.3 10080.4 76542.4
Std. dev. 9659.4 9658.7 9657.6 9659.7 9654.2

Real Mean Value 6547.2 6545 6549.2 6558.5 6555.3
Std. dev. 3476.2 3475.3 3477.4 3478.2 3478.4

Week 46 47 48 49 50

Simulation Mean Value 17012.3 17013.4 17018.4 17030.5 17052.7
Std. dev. 9686.6 9687.6 9686 9684.6 9685

Real Mean Value 23985.8 23988.8 23990.2 23991.3 23990.7
Std. dev. 1354.9 1353.3 1353.8 1354 1355.1

Table 6: Maximum likelihood estimates for reservoir inflows

Parameter φ1 γ1 γ2 γ41 σ2

Estimate 0.89 1.23 0.45 0.78 680.12

ministic and stochastic planning problems that have fu-
ture values of data as input. Direct application of the
ARMA framework might not successfully capture inter-
mittency and the current results show a moderate per-
formance with respect to hourly stream-flows.
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Figure 3: Residuals of day-ahead market prices
Figure 4: Forecast and simulated day-ahead market prices
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Figure 5: Hourly reservoir inflows

Figure 6: Forecast and simulated reservoir inflows
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