Effect of hydrogen addition on the catalytic combustion of fuel-lean carbon monoxide-air mixtures over platinum for micro-scale power generation applications

Junjie Chen, Longfei Yan, Wenya Song, Deguang Xu

Abstract


The catalytic combustion of hydrogen and carbon monoxide over Pt/ -Al2O3 catalyst was investigated numerically for
H2/CO/O2/N2 mixtures with overall lean equivalence ratios ' = 0.117 .. 0.167, H2:CO molar ratios 1:1.5 .. 1:6, a pressure
of 0.6 MPa, and a surface temperature range from 600 to 770 K relevant for micro-scale turbines and large gas turbine
based power generation systems. Simulations were carried out with a two-dimensional CFD (Computational Fluid Dynamics)
model in conjunction with detailed hetero-/homogeneous kinetic schemes and transports to explore the impact of hydrogen
addition on catalytic combustion of carbon monoxide. The detailed reaction mechanisms were constructed by implementing
recent updates to existing kinetic models. The simulation results indicated that the hydrogen addition kinetically promotes the
catalytic combustion of carbon monoxide at wall temperatures as low as 600 K, whereby the catalytic reactions of hydrogen
are fully lit-off and the conversion of carbon monoxide is mixed transport/kinetically controlled. Such a low temperature limit
is of great interest to idling and part-load operation in large gas turbines and to normal operation for recuperative micro-scale
turbine systems. Kinetic analysis demonstrated that the promoting impact of hydrogen addition on catalytic combustion of carbon
monoxide is attributed to the indirect effect of hydrogen reactions on the surface species coverage, while direct coupling
steps between hydrogen and carbon monoxide are of relatively minor importance. The added hydrogen inhibits the catalytic
oxidation of carbon monoxide for wall temperatures below 520 K, which are well below the minimum inlet temperatures of
reactants in micro-scale turbine based power generation systems.


Keywords


Catalytic combustion; Hydrogen promotion; Carbon monoxide; Synthesis gas; Power generation system

Full Text:

PDF

References


A. C. Fernandez-Pello, Micropower generation using combustion: Issues

and approaches, Proceedings of the Combustion Institute 29 (1)

(2002) 883–899.

D. C. Walther, J. Ahn, Advances and challenges in the development

of power-generation systems at small scales, Progress in Energy and

Combustion Science 37 (5) (2011) 583–610.

A. Mehra, X. Zhang, A. A. Ayón, I. A. Waitz, M. A. Schmidt, C. M.

Spadaccini, A six-wafer combustion system for a silicon micro gas turbine

engine, Journal of Microelectromechanical Systems 9 (4) (2000)

–527.

C. M. Spadaccini, J. Peck, I. A. Waitz, Catalytic combustion systems

for microscale gas turbine engines, Journal of Engineering for Gas

Turbines and Power 129 (1) (2005) 49–60.

C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko, I. A. Waitz,

High power density silicon combustion systems for micro gas turbine

engines, Journal of Engineering for Gas Turbines and Power 125 (3)

(2003) 709–719.

K. Isomura, M. Murayama, S. Teramoto, K. Hikichi, Y. Endo, S. Togo,

S. Tanaka, Experimental verification of the feasibility of a 100 w class

micro-scale gas turbine at an impeller diameter of 10 mm, Journal of

Micromechanics and Microengineering 16 (9) (2006) 254–261.

K. Isomura, S. Tanaka, S. Togo, H. Kanebako, M. Murayama, N. Saji,

F. Sato, M. Esashi, Development of micromachine gas turbine for

portable power generation, JSME International Journal Series B Fluids

and Thermal Engineering 47 (3) (2004) 495–464.

A. H. Epstein, micro-electro-mechanical systems gas turbine engines,

Journal of Engineering for Gas Turbines and Power 126 (2) (2004)

–226.

T. Singh, R. Marsh, G. Min, Development and investigation of a noncatalytic

self-aspirating meso-scale premixed burner integrated thermoelectric

power generator, Energy Conversion and Management 117

(2016) 431–441.

E. D. Tolmachoff, W. Allmon, C. M. Waits, Analysis of a high throughput

n-dodecane fueled heterogeneous/homogeneous parallel plate microreactor

for portable power conversion, Applied Energy 128 (2014)

–118.

Z. Zhang, W. Yuan, J. Deng, Y. Tang, Z. Li, K. Tang, Methanol catalytic

micro-combustor with pervaporation-based methanol supply system,

Chemical Engineering Journal 283 (2016) 982–991.

C. H. Leu, S. C. King, J. M. Huang, C. C. Chen, S. S. Tzeng, C. I. Lee,

W. C. Chang, C. C. Yang, Visible images of the catalytic combustion

of methanol in a micro-channel reactor, Chemical Engineering Journal

(2013) 201–208.

A. Brambilla, M. Schultze, C. E. Frouzakis, J. Mantzaras, R. Bombach,

K. Boulouchos, An experimental and numerical investigation of premixed

syngas combustion dynamics in mesoscale channels with controlled

wall temperature profiles, Proceedings of the Combustion Institute

(3) (2015) 3429–3437.

R. Sui, N. I. Prasianakis, J. Mantzaras, N. Mallya, J. Theile, D. Lagrange,

M. Friess, An experimental and numerical investigation of the

combustion and heat transfer characteristics of hydrogen-fueled catalytic

microreactors, Chemical Engineering Science 141 (2016) 214–

P. M. Allison, J. F. Driscoll, M. Ihme, Acoustic characterization of a

partially-premixed gas turbine model combustor: Syngas and hydrocarbon

fuel comparisons, Proceedings of the Combustion Institute

(2) (2013) 3145–3153.

M. Gieras, T. Stankowski, Computational study of an aerodynamic flow

through a micro-turbine engine combustor, Journal of Power Technologies

(2) (2012) 68–79.

S. K. Aggarwal, D. Bongiovanni, M. Santarelli, Extinction of laminar

diffusion flames burning the anodic syngas fuel from solid oxide fuel

cell, International Journal of Hydrogen Energy 40 (22) (2015) 7214–

. Aydın, H. Nakajima, T. Kitahara, Current and temperature distributions

in-situ acquired by electrode-segmentation along a microtubular

solid oxide fuel cell operating with syngas, Journal of Power Sources

(2015) 1053–1061.

Y. Zhang, W. Shen, H. Zhang, Y. Wu, J. Lu, Effects of inert dilution

on the propagation and extinction of lean premixed syngas/air flames,

Fuel 157 (2015) 115–121.

W. Jerzak, M. Ku´znia, M. Zajemska, The effect of adding co2 to the

axis of natural gas combustion flames on co and nox concentrations in

the combustion chamber, Journal of Power Technologies 94 (3) (2014)

–210.

S. Morel, The afterburning of carbon monoxide in natural gas combustion

gases in the presence of catalytic ceramic coatings, Journal of

Power Technologies 92 (2) (2012) 109–114.

A. Liu, B. Wang, W. Zeng, L. Chen, Experimental study of ch4 catalytic

combustion on different catalyst, Journal of Power Technologies 93 (3)

(2013) 142–148.

A. Brambilla, C. E. Frouzakis, J. Mantzaras, R. Bombach, K. Boulouchos,

Flame dynamics in lean premixed co/h2/air combustion in a

mesoscale channel, Combustion and Flame 161 (5) (2014) 1268–

A. J. Santis-Alvarez, M. Nabavi, N. Hild, D. Poulikakos, W. J. Stark,

A fast hybrid start-up process for thermally self-sustained catalytic nbutane

reforming in micro-sofc power plants, Energy & Environmental

Science 4 (8) (2011) 3041–3050.

J. Thormann, L. Maier, P. Pfeifer, U. Kunz, O. Deutschmann, K. Schubert,

Steam reforming of hexadecane over a rh/ceo2 catalyst in microchannels:

Experimental and numerical investigation, International

Journal of Hydrogen Energy 34 (12) (2009) 5108–5120.

G. D. Stefanidis, D. G. Vlachos, N. S. Kaisare, M. Maestri, Methane

steam reforming at microscales: Operation strategies for variable

power output at millisecond contact times, AIChE Journal 55 (1) (2009)

–191.

A. B. Mhadeshwar, D. G. Vlachos, Hierarchical multiscale mechanism

development for methane partial oxidation and reforming and for

thermal decomposition of oxygenates on rh, The Journal of Physical

Chemistry B 109 (35) (2005) 16819–16835.

A. B. Mhadeshwar, D. G. Vlachos, Is the water-gas shift reaction on pt

simple?: Computer-aided microkinetic model reduction, lumped rate

expression, and rate-determining step, Catalysis Today 105 (1) (2005)

–172.

A. B. Mhadeshwar, D. G. Vlachos, Microkinetic modeling for waterpromoted

co oxidation, water-gas shift, and preferential oxidation of co

on pt, The Journal of Physical Chemistry B 108 (39) (2004) 15246–

M. Schultze, J. Mantzaras, F. Grygier, R. Bombach, Hetero-

/homogeneous combustion of syngas mixtures over platinum at fuelrich

stoichiometries and pressures up to 14 bar, Proceedings of the

Combustion Institute 35 (2) (2015) 2223–2231.

X. Zheng, J. Mantzaras, R. Bombach, Kinetic interactions between hydrogen

and carbon monoxide oxidation over platinum, Combustion and

Flame 161 (1) (2014) 332–346.

J. Mantzaras, Catalytic combustion of syngas, Combustion Science

and Technology 180 (6) (2008) 1137–1168.

M. Sun, E. B. Croiset, R. R. Hudgins, P. L. Silveston, M. Menzinger,

Steady-state multiplicity and superadiabatic extinction waves in the oxidation

of co/h2 mixtures over a pt/al2o3-coated monolith, Industrial &

Engineering Chemistry Research 42 (1) (2003) 37–45.

J. A. Federici, D. G. Vlachos, Experimental studies on syngas catalytic

combustion on pt/al2o3 in a microreactor, Combustion and Flame

(12) (2011) 2540–2543.

Y. Ghermay, J. Mantzaras, R. Bombach, Experimental and numerical

investigation of hetero-/homogeneous combustion of co/h2/o2/n2

mixtures over platinum at pressures up to 5 bar, Proceedings of the

Combustion Institute 33 (2) (2011) 1827–1835.

S. Eriksson, M. Wolf, A. Schneider, J. Mantzaras, F. Raimondi,

M. Boutonnet, S. Järås, Fuel-rich catalytic combustion of methane in

zero emissions power generation processes, Catalysis Today 117 (4)

(2006) 447–453.

S. Eriksson, A. Schneider, J. Mantzaras, M. Wolf, S. JärÅs, Experimental

and numerical investigation of supported rhodium catalysts for

partial oxidation of methane in exhaust gas diluted reaction mixtures,

Chemical Engineering Science 62 (15) (2007) 3991–4011.

A. Schneider, J. Mantzaras, P. Jansohn, Experimental and numerical

investigation of the catalytic partial oxidation of ch4/o2 mixtures diluted

with h2o and co2 in a short contact time reactor, Chemical Engineering

Science 61 (14) (2006) 4634–4649.

J. Duan, L. Sun, G. Wang, F. Wu, Nonlinear modeling of regenerative

cycle micro gas turbine, Energy 91 (2015) 168–175.

FLUENT, Fluent 6.3 user’s guide, Tech. rep., Fluent Inc., Lebanon,

New Hampshire, USA (2006).

J. Mantzaras, C. Appel, P. Benz, U. Dogwiler, Numerical modelling

of turbulent catalytically stabilized channel flow combustion, Catalysis

Today 59 (1-2) (2000) 3–17.

J. Mantzaras, P. Benz, An asymptotic and numerical investigation of

homogeneous ignition in catalytically stabilized channel flow combustion,

Combustion and Flame 119 (4) (1999) 455–472.

J. Mantzaras, C. Appel, Effects of finite rate heterogeneous kinetics on

homogeneous ignition in catalytically stabilized channel flow combustion,

Combustion and Flame 130 (4) (2002) 336–351.

D. G. Norton, D. G. Vlachos, Combustion characteristics and flame stability

at the microscale: a cfd study of premixed methane/air mixtures,

Chemical Engineering Science 58 (21) (2003) 4871–4882.

D. G. Norton, D. G. Vlachos, A cfd study of propane/air microflame

stability, Combustion and Flame 138 (1-2) (2004) 97–107.

O. Deutschmann, L. Maier, U. Riedel, A. H. Stroeman, R. W. Dibble,

Hydrogen assisted catalytic combustion of methane on platinum,

Catalysis Today 59 (1-2) (2000) 141–150.

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli,

B. Hemmerling, A. Stampanoni, An experimental and numerical

investigation of homogeneous ignition in catalytically stabilized combustion

of hydrogen/air mixtures over platinum, Combustion and Flame

(4) (2002) 340–368.

M. Schultze, J. Mantzaras, Hetero-/homogeneous combustion of hydrogen/

air mixtures over platinum: Fuel-lean versus fuel-rich combustion

modes, International Journal of Hydrogen Energy 38 (25) (2013)

–10670.

J. Koop, O. Deutschmann, Detailed surface reaction mechanism for ptcatalyzed

abatement of automotive exhaust gases, Applied Catalysis

B: Environmental 91 (1-2) (2009) 47–58.

Y. Ghermay, J. Mantzaras, R. Bombach, Effects of hydrogen preconversion

on the homogeneous ignition of fuel-lean h2/o2/n2/co2 mixtures

over platinum at moderate pressures, Combustion and Flame

(10) (2010) 1942–1958.

Y. Ghermay, J. Mantzaras, R. Bombach, K. Boulouchos, Homogeneous

combustion of fuel-lean h2/o2/n2 mixtures over platinum at elevated

pressures and preheats, Combustion and Flame 158 (8) (2011)

–1506.

U. Dogwiler, P. Benz, J. Mantzaras, Two-dimensional modelling for catalytically

stabilized combustion of a lean methane-air mixture with elementary

homogeneous and heterogeneous chemical reactions, Combustion

and Flame 116 (1-2) (1999) 243–258.

J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, J. J. S. Jr., A comprehensive

kinetic mechanism for co, ch2o, and ch3oh combustion,

International Journal of Chemical Kinetics 39 (3) (2007) 109–136.

M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, S. J. Klippenstein, Comprehensive

h2/o2 kinetic model for high-pressure combustion, International

Journal of Chemical Kinetics 44 (7) (2012) 444–474.

R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, Chemkin-iii: A fortran

chemical kinetics package for the analysis of gas-phase chemical and

plasma kinetics, Tech. Rep. Report No. SAND96-8216, Sandia National

Laboratories, Livermore, CA (USA) (1996).

M. E. Coltrin, R. J. Kee, F. M. Rupley, E. Meeks, Surface chemkin-iii:

A fortran package for analyzing heterogeneous chemical kinetics at a

solid-surface - gas-phase interface, Tech. Rep. Report No. SAND96-

, Sandia National Laboratories, Livermore, CA (USA) (1996).

R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, H. K.

Moffat, A fortran computer code package for the evaluation of gasphase,

multicomponent transport properties, Tech. Rep. Report No.

SAND86-8246B, Sandia National Laboratories, Livermore, CA (USA)

(1998).

C. H. Kuo, P. D. Ronney, Numerical modeling of non-adiabatic heatrecirculating

combustors, Proceedings of the Combustion Institute

(2) (2007) 3277–3284.

A. K. Chaniotis, D. Poulikakos, Modeling and optimization of catalytic

partial oxidation methane reforming for fuel cells, Journal of Power

Sources 142 (1-2) (2005) 184–193.

E. Meeks, H. K. Moffat, J. F. Grcar, R. J. Kee, Aurora: A fortran program

for modeling well stirred plasma and thermal reactors with gas

and surface reactions, Tech. Rep. Report No. SAND96-8218, Sandia

National Laboratories, Livermore, CA (USA) (1996).


Refbacks

  • There are currently no refbacks.