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Abstract

In this paper an analysis is carried out to examine the effects of natural convection heat transfer for steady bound-
ary layer flow of an Eyring Powell fluid flowing through a vertical circular cylinder. The governing partial differential
equations along with the boundary conditions are reduced to dimensionless form by using the boundary layer
approximation and applying suitable similarity transformations. The resulting nonlinear coupled system of ordi-
nary differential equations subject to the appropriate boundary conditions is solved using the analytic technique
homotopy analysis method (HAM). The effects of the physical parameters on the flow and heat transfer charac-
teristics are presented. The behavior of skinfriction coefficient and Nusselt numbers are also studied for different
parameters.
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1. Introduction

The theory of mixed convection effects comprising tem-
perature difference at different locations of the fluid and
heat flow due to some external agent is used widely ow-
ing to its important applications in the world of industry
and technology. Bachok et al [1] analyzed suction and
injection effects on the problem of mixed convection
boundary layer steady flow of a viscous fluid over a per-
meable vertical flat plate embedded in an anisotropic
porous medium. In another work, Ahmad et al [2] exam-
ined the influence of temperature dependent variable
viscosity over the flow of mixed convection boundary
layer flow past an isothermal horizontal circular cylin-
der. Further, Cheng [3] studied the natural convec-
tion heat transfer of non-Newtonian fluids in a porous
medium from a downward-pointing vertical cone under
mixed thermal boundary conditions. Recently, Rashad
et al [4] examined the influence of uniform transpira-
tion velocity effects on free convective boundary layer
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flow of a non-Newtonian fluid over a permeable verti-
cal cone embedded in a porous medium saturated with
a nanofluid. In a recent work, Nadeem et al [5] stud-
ied the effects of mixed convection heat transfer for the
boundary layer flow of a steady viscous nanofluid over
a vertical slender cylinder. A few other interesting ef-
forts concerning the concept of mixed convection heat
transfer are included in [6–18].
Eyring Powell fluid is a three constant fluid model that
is capable of displaying a non-zero bounded viscosity
at both the surface of the sheet and the fluid at infin-
ity. Noreen and Nadeem [19] investigated the heat and
mass transfer characteristics on the peristaltic flow of
an Eyring Powell fluid in an endoscope. In another ef-
fort, Yurusoy [20] studied the problem of pressure distri-
bution of a slider bearing lubricated with Eyring Powell
fluid. The purpose of the present investigation is to ex-
amine the mixed convection heat transfer effects over
the steady incompressible flow of Eyring Powell fluids
over a vertical circular cylinder. To the best knowledge
of the authors the stagnation flow of Eyring Powell fluid
in a cylinder has not been explored to date. The solu-
tions of the problem were produced using the homotopy
analysis method (HAM). A comparison of the present



Journal of Power Technologies 96 (1) (2016) 57–62

solutions is also presented as a special case with the
work in [5]. The paper concludes with a results and
discussion section that contains a detailed discussion
about the physical features the problem entails.

2. Formulation

Consider the problem of mixed convection boundary
layer flow of an Eyring Powell fluid through a vertical
circular cylinder having radius a The temperature at
the surface of the cylinder is assumed to be a constant
Tw and the uniform ambient temperature is taken to be
T∞ such that the quantity Tw − T∞ > 0, in the case of
the assisting flow, while Tw − T∞ < 0, in case of the
opposing flow, respectively. Under the boundary layer
assumptions the equations of motion and heat transfer
are
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where the velocity components along the (x, r) axes

are (w, u), ρ is density, ν is the kinematic viscosity, p is
pressure, c and β are the material fluid parameters, β∗

is the coefficient of thermal expansion, g is the gravita-
tional acceleration in x-direction, M is the Eyring Powell
parameter, T is the temperature, γ is the curvature pa-
rameter, α is the thermal diffusivity, cp is the specific
heat at constant pressure, U∞ is the surface fluid ve-
locity, and U is the free stream velocity and is defined
as U = U∞

(
x
l

)
.

The corresponding boundary conditions for the problem
are

u(x, a) = 0, u(x, a)→ U (x) as r → ∞, (4)

T (x, a) = Tw (x) , T (x, a)→ T∞ as r → ∞. (5)

3. Solution of the problem

Introduce the following similarity transformations [21]:
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) 1
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where the characteristic temperature ∆T is calculated

from the relations Tw − T∞ =
(

x
l

)2
∆T . With the help of

transformations (6) and (7), Eqs. (1) to (3) take the form
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in which γ =
(
νl/U∞a2

)1/2
, M = 1/βµc, K = 2U2

∞/3c2l2

is the dimensionless Eyring powell parameters, λ =

gβ∗∆T x/U2
∞ is the buoyancy parameter, Pr = v/α is

the Prandtl number and Ec = U2
∞/cp∆T is the Eckert

number.
The boundary conditions in nondimensional form are
defined as

f (0) = b, f ′ (0) = 0, f ′ → 1, as η→ ∞, (10)

θ (0) = 1, θ → 0, as η→ ∞, (11)

where b is any constant. The extra boundary condi-
tion of f (0) follows from the work in [21].The important
associated physical quantities such as shear stress at
the surface τw, the surface heat flux qw and the Nusselt
numbers Nu are defined as

τw = (τrx)r→a, qw = −k(
∂T
∂y

)y=0, Nu/Re1/2
x = −θ′ (0) ,

(12)
where τrx is the component of stress tensor, k is the
thermal conductivity and Rex is the local Reynolds num-
ber.
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Figure 1: ~1—curves for f ′ plotted for different values of K and M

The solution of the present problem is obtained by us-
ing the powerful analytical technique homotopy analy-
sis method (HAM). In the present case we seek initial
guesses to be [19, 20, 22–30]

f0 (η) = b − 1 + η + e−η, θ0 (η) = e−η. (13)

The corresponding auxiliary linear operators are

L f =
d3

dη3 +
d2

dη2 , Lθ =
d2

dη2 +
d
dη
, (14)

satisfying

L f [c1 + c2η + c3e−η] = 0, Lθ[c4 + c5e−η] = 0, (15)

where ci (i = 1, ..., 5) are arbitrary constants. The
zeroth-order deformation equations are

(1 − q) L f [ f̂ (η; q) − f0 (η)] = _qH f~1N f [ f̂ (η; q)],
(16)

(1 − q) Lθ[θ̂ (η; q) − θ0 (η)] = _qHθ~2Nθ[θ̂ (η; q)], (17)

where the auxiliary convergence parameters H f and
Hθ, both are taken to be e−η.
Further details of the HAM procedure can be found in
the listed references. However, the numerical results of
the present solutions are presented in the proceeding
section.

4. Results and discussion

The problem of steady incompressible flow of non-
Newtonain Eyring Powell fluid flowing through a vertical

Figure 2: ~2—curves for θ plotted for different values of Pr and λ

circular cylinder under the influence of mixed convec-
tion heat transfer and deceptions effects is computed
by applying the powerful analytic technique homotopy
analysis method (HAM). An associated fact with the
HAM solutions is their dependence upon the auxiliary
convergence parameters ~1 and ~2 corresponding to
momentum and heat transfer, respectively. Figs. 1 and
2 are included to observe the convergence region of
the involved auxiliary parameters for different combina-
tions of other involved parameters. Fig. 1 shows the
acceptable convergence regions computed at the sur-
face of the sheet, for the auxiliary parameter ~1 for dif-
ferent combinations of K and M when the bouncy pa-
rameter λ = 1 and the deception rate Eckert number
Ec = 0.5. It is noticed from Fig. 1 that with increase
in K, the convergence region decreases, whereas the
acceptable region for ~1 is greater for M = 2 than for
M = 1. The convergence region for velocity profile with
K = 1, M = 1 is −0.5 ≤ ~1 ≤ −0.1. Fig. 2 is included
to observe the convergence region for the auxiliary pa-
rameter ~2 involved in heat transfer for different values
of bouncy parameter λ, when Pr = 0.71. It is noted
from Fig. 2 that the convergence region with λ = 0 is
greater than for non-zero λ. Specifically for λ = 0 the
convergence region is −1.1 ≤ ~2 ≤ −0.1.
The influence of different involved parameters over the
heat and fluid flow are presented in Figs. 3 to 8. Figs. 3
to 5 are displaying the effects of some involved param-
eters over the fluid flow while Figs. 6 to 8 are drafted to
observe the influence of different parameters over the
heat transfer characteristics. Fig. 3 is prepared to pre-
dict the influence of curvature parameter γ and Eyring
Powell fluid parameter M over the nondimensional ve-
locity profile for presented values of the other involved
parameters. From Fig. 3 it is observed that with in-
crease in both γ and M the velocity profile decreases.
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Figure 3: Influence of γ and M over f ′

Figure 4: Influence of λ and Pr over f ′

Fig. 4 depicts the pattern adopted by the velocity pro-
file f ′ for different combinations of buoyancy parameter
λ and Prandtl number Pr for Eyring Powell fluids with
K = 1 and M = 1. From this sketch it is noted that with
increase in both λ and Pr, the velocity profile and mo-
mentum boundary layer thickness decreases. The be-
havior of different Eyring Powell parameter K and the
Eckert number Ec over the velocity profile f ′ is pre-
sented in Fig. 5. From Fig. 5 it is noticed that with
increase in K the velocity profile decreases while with
increase in Ec, the velocity profile increases.
The behavior of temperature profile θ for different val-
ues of Prandtl number Pr and Eyring Powell parameter
M is portrayed in Fig. 6. From Fig. 6 it is obvious that
with increase in Pr the temperature profile θ decreases
while with increase in M the temperature profile θ in-
creases. Fig. 7 gives the influence of curvature param-
eter γ and Prandtl number Pr over the temperature pro-
file θ. From Fig. 7 it is observed that with increase in
both Pr and γ the temperature profile decreases. Fig. 8
is included to observe the influence of K and Ec over
the temperature profile θ. From this figure it is clear that

Figure 5: Influence of K and Ec over f ′

Figure 6: Influence of Pr and M over θ

with increase in K, the temperature profile θ decreases
while with increase in Ec the temperature profile en-
hances.
Fig. 9 exhibits the influence of Reynolds numbers Re
over the skinfriction coefficient c f Plotted against the
Eyring Powell parameter K. From this sketch it is ev-
ident that for smaller K, increase in Re decreases the
skinfriction coefficient c f , while for larger K increase in
Re increases c f . Fig. 10 gives the impact of Prandtl
numbers Pr over the local Nusselt numbers Nu graphed
against the Reynolds numbers Re. From Fig. 10 it is
clear that with increase in both Pr and Re the local Nus-
selt numbers increases.
Table 1 gives a comparison of the special case of the
present solutions with the existing work [5]. From Ta-
ble 1 it is noted that the two results are in excellent
agreement. Table 2 contains the values of velocity
boundary derivatives corresponding to the shear stress
at the surface of the cylinder tabulated for different com-
binations of Eyring Powell parameters K and Eckert
numbers Ec, whereas Table 3 is prepared for values
of the temperature boundary derivatives corresponding
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Figure 7: Influence of Pr and γ over θ

Figure 8: Influence of Ec and K over θ

to heat flux at the surface of the cylinder for different
Prandtl numbers Pr and Eyring Powell parameter M.
From Table 2 it is noticed that with increase in Ec, shear
stress at the surface increases for small K, while the
surface shear stress decreases for larger K. From Ta-
ble 3 it is deduced that with increase in Pr heat flux
at the surface of the cylinder increases whereas with
increase in M heat flux at the surface of the cylinder
decreases.

Table 1: Comparison of boundary derivatives for velocity profile of
present results with [5] for various values of b and γ when λ = 0
and M = 0

f”(0)

[5] Present [5] Present [5] Present

b\γ 0.5 1.0 1.5

-1 0.9918 0.9918 1.1942 1.1942 1.3729 1.3729
0 1.4886 1.4886 1.7244 1.7244 1.7954 1.7954
1 2.0397 2.0397 2.1751 2.1751 2.2982 2.2982
2 2.7332 2.7332 2.8029 2.8029 2.8746 2.8746

Figure 9: Influence of Re over c f against K

Figure 10: Influence of Pr over Nu against Re
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