Thermodynamic and economic evaluation of a CO2 membrane separation unit integrated into a supercritical coal-fired heat and power plant

Anna Skorek-Osikowska, Łukasz Bartela, Janusz Kotowicz

Abstract


This paper presents the results of thermodynamic and economic analysis of a coal-fired combined heat and power plant (CHP) working at supercritical parameters, integrated with carbon dioxide capture installation based on membrane separation. Two configurations of the membrane systems are described, compared and optimized. Both of them consists of two-stage membrane installation, but in first variant (Case 1) no recirculation is performed and in the second one (Case 2), retentate from behind the second membrane is recirculated before first membrane. Economic analyses includes comparison of the systems with a unit working without CO2 capture (reference unit). Main thermodynamic (annual generation of the products, efficiencies) and economic (break-even price of electricity, break-even price of membranes) indices are presented in this paper. The results show, that the profitability of the investment in CHP units integrated with CO2 capture is strongly dependant on the annual operation time and price of emission allowances. Better thermodynamic and economic characteristics are obtained for the system with retentate recirculation than for the system without recirculation. 


Keywords


membrane CO2 separation; combined heat and power plant; thermodynamic and economic analysis

Full Text:

PDF

References


Makieła M.: Energetyczna Mapa Drogowa EU 2050, nr 6, Globenergia 2011.

Komisja Europejska. Komunikat Komisji do Parlamentu Europejskiego, Rady, Europejskiego Komitetu Ekonomiczno-Społecznego i Komitetu Regionów: Plan działania prowadzący do przejścia na konkurencyjną gospodarkę niskoemisyjną do 2050 r. Bruksela 8.3.2011, KOM (2011) 112.

Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.: Advances in CO2 capture technology − The U.S. Department of Energy’s carbon Sequestration Program, International Journal of Greenhouse Gas Control, 2 (2008) p. 9-20.

Kanniche M., Gros-Bonnivard R., Jaud P., Valle-Marcos J., Amann J.M., Bouallou C.: Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Applied Thermal Engineering, 30 (2010), p. 53-62.

Descamps C., Bouallou C., Kanniche M.: Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal. Energy, 33 (2008), p. 874-881.

Stec M., Tatarczuk A., Więcław-Solny L., Krótki A., Ściążko M., Tokarski S.: Pilot plant results for advanced CO2 capture process using amine scrubbing at the Jaworzno II Power Plant in Poland. Fuel (2015) doi:10.1016/j.fuel.2015.01.14.

Skorek-Osikowska A., Kotowicz J., Janusz-Szymańska K.: Comparison of the energy intensity of the selected CO2 − capture methods applied in the ultra-supercritical coal power plants. Energy&Fuels, 26 (2012), p. 6509-6517.

Skorek-Osikowska A., Bartela Ł., Kotowicz J.: Influence of the selected parameters on the effectiveness of IGCC system integrated with CCS installation. Chemical and Process Engineering, 35(2) (2014), p. 233-248.

Favre E.: Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science, 294 (2007), p. 50-59.

Brunetti A., Scura F., Barbieri G., Drioli E.: Membrane technologies for CO2 separation. Journal of Membrane Science, 359 (2010), p. 115-125.

Remiorz L.: Detecting disturbance of uniformity of a nitrogen and CO2 mixture in an acoustic tube. Journal of Power Technologies, 94 (2014), p. 226-231.

Kotowicz J., Bartela Ł., Skorek-Osikowska A.: Analizy bloku kogeneracyjnego na parametry nadkrytyczne zintegrowanego z instalacją separacji CO2. Wydawnictwo Politechniki Śląśkiej, Gliwice 2014.

Kotowicz J., Skorek-Osikowska A., Bartela Ł., Balicki A., Michalski S.: Technologie oxy-spalania dla bloków węglowych zintegrowanych z wychwytem dwutlenku węgla. Wydawnictwo Politechniki Śląśkiej, Gliwice 2015.

Wiciak G., Kotowicz J., Badania wpływu strumienia przepływu i ciśnienia na własności separacji CO2 membrany kapilarnej polimerowej - wybrane zagadnienia. Membrany i Procesy Membranowe w Ochronie Środowiska Monografie Komitetu Inżynierii Środowiska PAN 2012, vol. 96, 291-300. ISBN 83-89293-23-7.

Wijmans J.G., Baker R.W., The solution-diffusion model: a review. Journal of Membrane Science 1995;107:1-21.

Peng D.Y., Robinson D.B.: A new two-constant equation-of-state. Ind. Eng. Chem. Fundam., 15 (1976), p. 59-64.

Janusz-Szymańska K., Kotowicz J.: Konsekwencje termodynamiczne i ekonomiczne wprowadzenia do bloku energetycznego membranowej instalacji wychwytu gazu cieplarnianego (CO2). Rynek Energii 2014, 112(3), p.76-81.

Car A., Stropnik Ch., Yave W., Peinemann K-V., PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. Journal of Membrane Science 2008;307:88–95.

DOE/NETL. CO2 Capture Membrane Process for Power Plant Flue Gas. Final Technical Report DOE Cooperative Agreement No. DE-NT0005313. 2011. www.netl.doe.gov

U.S. Department of Energy. Advanced carbon dioxide capture R&D program: technology update, Appendix b: carbon dioxide capture technology sheets - Post-Combustion Membranes. May 2013. www.netl.doe.gov.

Trotignon R., In search of the carbon price. The European CO2 emission trading scheme: From ex-ante and ex-post analysis to the projection in 2020. Paris, 2012


Refbacks

  • There are currently no refbacks.