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Abstract

This article presents the off-design operation of a 900 MW-class steam turbine cycle upgraded with utilization of low-
temperature waste heat taken from boiler flue gas. The low-temperature heat contributes to increasing the efficiency of
power plants without introducing many complex changes to the whole system. The base for investigations was a power
unit operating in off-design conditions and supplied with steam from a BB–2400 boiler. Modifications to the model were
made using commercially available software and by applying the Stodola equation and the SCC method. Calculations
for off-design conditions show that, after making some modifications to the system, both heat and electricity generation
could be increased through the addition of a low-temperature heat exchanger.
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1. Introduction

Many industrial processes generate large amounts of
waste heat that, in most cases, is discharged to the atmo-
sphere or dissipated by other means. Usually, the heat
carrier is a liquid, gas or a mixture which is at a temper-
ature of anywhere from nearly equal to the surrounding
temperature to as much as 1,000◦C. The temperature of
the flue gases leaving the facility determines the amount
of waste heat and, therefore, the efficiency of the installa-
tion. Where the temperature of flue gases is in the region
of 540◦C waste heat is one of the main energy losses. At
1,000◦C more than half of the fuel energy is converted
into waste heat.

The European Union has placed limits on CO2 emis-
sions by Member States as part of its Emission Trading
Scheme [1]. This impacts fossil fuel power plants to
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a significant degree, as their emissions are governed by
the number of emission allowances they receive from the
Member State allocation. There are a variety of meth-
ods available to remove CO2 from a fossil fuel power
plant system. Almost all of the methods for recovering
CO2 (sequestration) that are currently proposed result in
decreased power unit efficiency and demand capital in-
vestment. The disadvantage was significantly limited for
systems with fuel cell technologies [2–21], in which the
Molten Carbonate Fuel Cells [22–25] separate the gas and
simultaneously increasing the power and efficiency of the
unit. Thus, there is a need to look for a new way to
improve the efficiency and power of power plants to re-
duce this negative effect of Carbon Capture and Storage
(CCS) [26]. Recovery (reuse) of waste heat makes it pos-
sible to significantly increase the efficiency of an existing
facility. This is mainly done by recycling some of the heat
to the most appropriate point in the main installation or
by generating additional electrical energy [27]. Currently
applied technologies for heat conversion utilize gases at
higher temperatures than the flue gases of a conventional
power unit [28].

Each case of low-temperature heat recovery should be
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analyzed from the thermodynamic, technical and eco-
nomic points of view [29, 30]. In order to perform such
analysis it is necessary to have appropriate mathematical
models [31] both of the whole system as well as of its
separate elements. The following aspects are central: heat
capacity of the flue gases, their flow intensity, required
operating parameters, for example of the installation to
which the heat should be delivered, etc.

A procedure for designing a set of heat exchangers
was developed, e.g. for use in the oil refining indus-
try. Both graphical and mathematical computations were
used, which resulted in the creation of an approach that
could be used in various networks [32].

Additionally, the size and type of heat exchanger have
to be considered. Low-temperature heat should be re-
covered in a counter-flow heat exchanger, as this is the
most efficient way from the exergetic point of view. The
other available options are cross-flow and parallel de-
signs [33, 34]. However, since the capital costs involved
in a counter-flow heat exchanger are the greatest, it is
not advised for facilities operating during short periods
of time [35].

Low-temperature heat can be reused to transform a reg-
ular CHP plant into a polygeneration plant which pro-
duces ethanol from wood. Simulations led to the conclu-
sion that combining a CHP plant with an ethanol produc-
tion facility delivers an 11% increase in efficiency com-
pared to separate production [36].

In boilers that are currently in use the heat of flue gases
is recovered only to a certain extent. This is determined by
the condensation temperature of the steam in flue gases.
If the flue gases are cooled to a temperature below the
dew point, steam will condense, and, for fuels containing
sulfur (e.g. hard coal and lignite) it will react with sul-
fur dioxide and produce sulfuric acid. At present this is
the main reason that limits the temperature of cooling flue
gases.

In order to use the heat of the flue gases efficiently,
a small temperature difference between the cooling and
cooled media must be retained. To obtain minimal val-
ues for the temperature difference, heat exchange must be
intensified (particularly for a gaseous medium with a low
convective heat transfer coefficient). The intensification
of the heat exchange can be achieved by making its area
more complex, i.e. by finning the surface. However, a too
densely finned surface can become dusted due to the fact
that flue gases may contain a large amount of volatile par-
ticles.

For technical reasons the easiest way to reuse low-
temperature heat is to heat up industrial water. Unfortu-

Figure 1: STF-100 steam turbine view

Figure 2: Lignite fueled boiler type BB–2400

nately, its use is limited significantly by the low tempera-
ture of returning water in the municipal heating systems.
The Polish heating grid is a high-temperature one. In
summer the returning water temperature is kept at around
43..46◦C, whereas in winter it is 60◦C. Therefore, it is fea-
sible to recover and reuse low-temperature heat in sum-
mer.

2. Mathematical model of a 900 MW-class unit

A model of a STF–100 (see Fig. 1) steam turbine
unit was built to specify operating at off-design condi-
tions. The model of the unit and its modifications was
made based on GateCycle software [37, 38]. Steam flows
through the subsequent stages of the turbine were deter-
mined using the Stodola equation and the efficiencies were
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calculated by the SCC method (from names: Spencer,
Cotton, Cannon) [39]. This method is recommended
by the American Society of Mechanical Engineering—
ASME, to calculate the efficiency of turbines in conven-
tional plants. A modified Stodola equation (otherwise
known as an ellipse Stodola) is as follows:

W = C
√

p
v

√
1 −

( r − r∗

1 − r∗

)2
(1)

where: W—steam flow, C—flow coefficient, p—inlet
steam pressure, v—specific volume of steam at turbine in-
let, r—pressure ratio, r*—critical pressure ratio.

The heat source for STF–100 units is an BB-2400 boiler
(see Fig. 2) with the following live steam parameters:
260/54.3 bar and 554/582◦C. Steam is decompressed in
a condensing turbine, and for the initial configuration the
unit generated 900 MWe during condensation operation.
The model of the unit was based on the heat diagram of
the 900 MW-class unit presented in Fig. 3.

The power plant is equipped with a steam turbine STF-
100 (DKY5-6N41B)—see Fig. 1, axial, five-bodies (sin-
gle flow high pressure body, double flow medium pressure
body, and three double flow low pressure bodies). The
DKY5-6N41B turbine is a reaction, condensing unit with
inter stage reheating, and seven bleeders. The regenera-
tion sub-system is composed of three low pressure heat
exchangers (W1) connected in parallel, and connected to
them in series are heat exchangers W2, W3 and W4. Ad-
ditional heating of the main condensate is done by a heat
recovery system from the exhaust. The feed water is
heated by a high pressure regeneration system consisting
of three series-connected heat exchangers W5, W6, and
W7. The following parameters were considered as the
nominal operation conditions of the boiler: steam pressure
after the boiler: 253/58.3 bar, thermal power: 900 MW,
steam temperature after the boiler: 550/580◦C.

The regeneration heat exchangers included in the model
have the following parameters: minimum temperature dif-
ference: 5◦C, condensate supercooling: 5◦C, convective
heat transfer coefficient in the volume where condensa-
tion occurs: 3.5 W/m2/K convective heat transfer coeffi-
cient from the condensate: 2 W/m2/K. Utilization of low-
temperature waste heat is done by bypasing W1—third
turbine bleed is closed, and condensate from a condenser
flow to heat exchanger LP1, in which the low tempera-
ture heat is utilized. Other system elements remain the
same. The results for two systems are presented: the orig-
inal system (Reference Case) and the system equiped with
heat exchanger LP1—Case NP1. All the heat exchangers
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Figure 4: Changes in the power generated, depending on the fuel sup-
ply

were modeled for off-design conditions with a constant
heat exchange area and given values of heat transfer coef-
ficient.

ηel =
P

QHHV
(2)

where: P—total power, kW; QHHV—heat delivered to
the system, kW.

Efficiencies of electrical energy generation were calcu-
lated using the formula 2 and were compared.

3. Off-design operation of an 900 MW-class power
plant with utilization of low temperature heat of
flue gases

The most suitable position for installing the low-
temperature heat exchanger was determined previ-
ously [40]. Based on the analysis made, the power gen-
erated by the individual units is calculated as a func-
tion of fuel supply. Changes in the power generated are
shown in Fig. 4. For better illustration, the difference ob-
tained between the powers generated in both cases are in-
dicated separately. As can be seen, the power generated
by unit NP1 is several megawatts higher due to higher ef-
ficiency. The changes in efficiency depend on the fuel sup-
ply stream, as shown in Fig. 5. The course of changes as
a function of the power generated is also plotted in Fig. 6.

The study made it possible to determine the tempera-
tures of the stream which leaves heat exchanger LP1 and
the temperature of water which leaves the condenser. In-
let parameters of both fluids are fixed in all variants apart
from the mass flow of the condensate leaving the con-
denser. The external fluid has a constant flow rate of
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Figure 5: The efficiency of power generation, depending on the fuel
supply
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Figure 6: The efficiency of power generation depending on the power
generated in both cases

347 kg/s and inlet temperature of 90◦C, but the conden-
sate has a temperature of 33◦C, and the flow rate varies in
a range from 401 kg/s for maximum power to 266 kg/s at
power of 530 MW. Outlet temperatures and duty of heat
exchanger LP1 are shown in Fig. 7.

It is shown that the external stream can be cooled to
43.4◦C for maximum power, but as the power decreases,
this temperature rises and at power of 530 MW it is al-
most 8◦C higher. Utilization of low grade heat, in this
case is smaller by 11 MW, gives only 84% heat utilization
compared to the highest power point.

The important factor here is power division between
specific parts of the steam turbine during off-design oper-
ation. Fig. 8 presents power generated by the each part of
the steam turbine: HP, IP, and LP with and without utiliza-
tion of low grade heat. All curves are almost identical—
thus not included in the paper. The only slight difference
is that in the case of low grade heat utilization, the LP part
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Figure 7: Outlet temperatures of streams which flow through heat ex-
changer LP1 as a function of power generated
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Figure 8: Power generated by the each part of the steam turbine

of the turbine generates higher power. During off-design
operation all parts of steam turbine work in almost iden-
tical fashion to the original case—see Fig. 9. Achieved
exhaust gases temperature is in the range 51–43◦C, what
means that steam condensation occur here. Thus special
attention is needed to avoid negative effect of sulfuric acid
which will be created as the result of reaction between sul-
fur dioxide and water by using acid resistant steels or/and
more efficient desulfurizing systems.

It is shown that the influence of the off-design operation
of the cycle performance can be neglected.

4. Conclusions

The heat exchanger added to the original system is one
of the elements of the heat recuperation system. The
start up procedure will predict its operation together with
the other heat exchangers placed in the heat cycle to as-
sure the proper temperature of the boiler feedwater. The
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Figure 9: Ratios of each part of the steam turbine in total power gen-
eration

added heat exchanger can be started up prior to running
the whole cycle due to the fact that usually a boiler starts
delivering low grade heat prior to the steam turbine.
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