Methodology for choosing the optimum architecture of a STES system

Jaroslaw Milewski, Marcin Wolowicz, Wojciech Bujalski


The paper presents a methodology for choosing geometrical parameters of a Seasonal Thermal Energy Storage
facility (STES) on its thermal capacity. The STES is placed in both the ground under ground and connected to
and solar panels. A number of scenarios were investigated to find an adequate geometrical proportions of the
STES (for constant tank size and solar panel area.) The results obtained show that the use of various STES
geometries could reduce heat accumulation to 30% depending on the architecture solution chosen.


Seasonal Thermal Energy Storage; methodology; architecture

Full Text:



W. Budzianowski, Modelling of co2 content in the atmosphere

until 2300: Influence of energy intensity of gross

domestic product and carbon intensity of energy, International

Journal of Global Warming 5 (1) (2013) 1–17.

J.-H. Wee, Carbon dioxide emission reduction using

molten carbonate fuel cell systems, Renewable and Sustainable

Energy Reviews 32 (2014) 178–191.

L. Bartela, J. Kotowicz, Analysis of operation of the gas

turbine in a poligeneration combined cycle, Archives of

Thermodynamics 34 (4) (2013) 137–159, cited By (since


T. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic

analysis of a supercritical coal-fired chp plant integrated

with an absorption carbon capture installation, Energy 64

(2014) 513–523, cited By (since 1996)0.

Łukasz Nikonowicz, J. Milewski, Determination of electronic

conductance of solid oxide fuel cells, Journal of

Power Technologies 91 (2) (2011) 82–92.

D. Bakalis, A. Stamatis, Incorporating available micro gas

turbines and fuel cell: Matching considerations and performance

evaluation, Applied Energy 103 (2013) 607–

R. Chacartegui, B. Monje, D. Sánchez, J. Becerra,

S. Campanari, Molten carbonate fuel cell: Towards negative

emissions in wastewater treatment chp plants, International

Journal of Greenhouse Gas Control 19 (2013)


C. Guerra, A. Lanzini, P. Leone, M. Santarelli, D. Beretta,

Experimental study of dry reforming of biogas in a tubular

anode-supported solid oxide fuel cell, International Journal

of Hydrogen Energy 38 (25) (2013) 10559–10566.

E. Jannelli, M. Minutillo, A. Perna, Analyzing microcogeneration

systems based on lt-pemfc and ht-pemfc by energy

balances, Applied Energy 108 (2013) 82–91.

D. McLarty, J. Brouwer, S. Samuelsen, Hybrid fuel cell

gas turbine system design and optimization, Journal of

Fuel Cell Science and Technology 10 (4).

J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance

improvement of ceria-based solid oxide fuel cells with

yttria-stabilized zirconia as an electronic blocking layer

by pulsed laser deposition, International Journal of Hydrogen

Energy 38 (5) (2013) 2407–2412.

S. Sieniutycz, J. Jezowski, Energy Optimization in Process

Systems and Fuel Cells, 2013.

J. Stempien, Q. Sun, S. Chan, Performance of power

generation extension system based on solid-oxide electrolyzer

cells under various design conditions, Energy 55

(2013) 647–657.

S.-B. Wang, C.-F. Wu, S.-F. Liu, P. Yuan, Performance

optimization and selection of operating parameters for a

solid oxide fuel cell stack, Journal of Fuel Cell Science

and Technology 10 (5).

W. Wang, H. Li, X.-F. Wang, Analyses of part-load control

modes and their performance of a sofc/mgt hybrid

power system, Dalian Ligong Daxue Xuebao/Journal of

Dalian University of Technology 53 (5) (2013) 653–658,

cited By (since 1996)0.

F. Chabane, N. Moummi, S. Benramache, Experimental

analysis on thermal performance of a solar air collector

with longitudinal fins in a region of biskra, algeria, Journal

of Power Technologies 93 (1) (2013) 52–58.

M. Reuss, M. Beck, J. Müller, Design of a seasonal thermal

energy storage in the ground, Solar energy 59 (4)

(1997) 247–257.

G. Hellström, S. Larson, Seasonal thermal energy

storage–the hydrock concept, Bulletin of Engineering Geology

and the Environment 60 (2) (2001) 145–156.

M. Inalli, M. Unsal, V. Tanyildizi, A computational model

of a domestic solar heating system with underground

spherical thermal storage, Energy 22 (12) (1997) 1163–

R. Yumruta¸s, M. Ünsal, A computational model of a heat

pump system with a hemispherical surface tank as the

ground heat source, Energy 25 (4) (2000) 371–388.

R. Yumruta¸s, M. Ünsal, Analysis of solar aided heat pump

systems with seasonal thermal energy storage in surface

tanks, Energy 25 (12) (2000) 1231–1243.

R. Yumruta¸s, M. Kano˘glu, A. Bolatturk, M. ¸ S. Bedir,

Computational model for a ground coupled space cooling

system with an underground energy storage tank, Energy

and buildings 37 (4) (2005) 353–360.

R. Yumruta¸s, M. Ünsal, Modeling of a space cooling system

with underground storage, Applied thermal engineering

(2) (2005) 227–239.

M. Inalli, Design parameters for a solar heating system

with an underground cylindrical tank, Energy 23 (12)

(1998) 1015–1027.

D. Lindenberger, T. Bruckner, H.-M. Groscurth, R. Kümmel,

Optimization of solar district heating systems: seasonal

storage, heat pumps, and cogeneration, Energy

(7) (2000) 591–608.

B. Nordell, G. Hellström, High temperature solar heated

seasonal storage system for low temperature heating of

buildings, Solar Energy 69 (6) (2000) 511–523.

D. Pahud, Central solar heating plants with seasonal duct

storage and short-term water storage: design guidelines

obtained by dynamic system simulations, Solar Energy

(6) (2000) 495–509.

M. Amirinejad, N. Tavajohi-Hasankiadeh, S. Madaeni,

M. Navarra, E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy

inference system and artificial neural network modeling

of proton exchange membrane fuel cells based on

nanocomposite and recast nafion membranes, International

Journal of Energy Research 37 (4) (2013) 347–357.

S. Hajimolana, S. Tonekabonimoghadam, M. Hussain,

M. Chakrabarti, N. Jayakumar, M. Hashim, Thermal

stress management of a solid oxide fuel cell using neural

network predictive control, Energy 62 (2013) 320–329.

D. Marra, M. Sorrentino, C. Pianese, B. Iwanschitz, A

neural network estimator of solid oxide fuel cell performance

for on-field diagnostics and prognostics applications,

Journal of Power Sources 241 (2013) 320–329.

O. Razbani, M. Assadi, Artificial neural network model of

a short stack solid oxide fuel cell based on experimental

data, Journal of Power Sources 246 (2014) 581–586, cited

By (since 1996)0.

A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi,

Application of artificial neural networks (ann) for modeling

of industrial hydrogen plant, International Journal of

Hydrogen Energy 38 (15) (2013) 6289–6297.

A. Ucar, M. Inalli, Thermal and economic comparisons of

solar heating systems with seasonal storage used in building

heating, Renewable Energy 33 (12) (2008) 2532–2539.

A. Simons, S. K. Firth, Life-cycle assessment of a 100%

solar fraction thermal supply to a european apartment

building using water-based sensible heat storage, Energy

and Buildings 43 (6) (2011) 1231–1240.

J. Zhao, Y. Chen, S. Lu, Simulation study on operating

modes of seasonal underground thermal energy storage,

in: Proceedings of ISES World Congress 2007 (Vol. I–

Vol. V), Springer, 2009, pp. 2119–2122.

P. Pinel, C. Cruickshank, I. Beausoleil-Morrison,

A.Wills, A review of available methods for seasonal storage

of solar thermal energy in residential applications, Renewable

and Sustainable Energy Reviews 15 (7) (2011)


M. Sweet, J. McLeskey, Numerical simulation of underground

seasonal solar thermal energy storage (sstes) for a

single family dwelling using trnsys, Solar Energy.

M. de Guadalfajara, M. A. Lozano, L. M. Serra, Evaluation

of the potential of large solar heating plants in spain,

Energy Procedia 30 (2012) 839–848.

M. L. Sweet, J. T. McLeskey Jr, Numerical simulation

of underground seasonal solar thermal energy storage

(SSTES) for a single family dwelling using TRNSYS, Solar

Energy 86 (1) (2012) 289–300.

K. Çomaklı, U. Çakır, M. Kaya, K. Bakirci, The relation

of collector and storage tank size in solar heating systems,

Energy Conversion and Management 63 (2012) 112–117.

T. Schmidt, J. Nussbicker, Monitoring results from german

central solar heating plants with seasonal storage, in:

Solar World Congress, ISES, 2005, pp. 1–6.

T. Schmidt, D. Mangold, New steps in seasonal thermal

energy storage in germany, Tech. rep., Solites - Steinbeis

Research Institute for Solar and Sustainable Thermal Energy

Systems (2006).

T. Schmidt, Seasonal thermal energy storage - pilot

projects and experiences in germany, Tech. rep., Steinbeis

Research Institute for Solar and Sustainable Thermal

Energy Systems (2008).

A. Zi˛ ebik, J. Zuwała, Analiza techniczno-ekonomiczna

zastosowania zasobnika ciepła w elektrociepłowni z

turbin ˛ a przeciwpr˛ e˙zn˛ a w celu maksymalizacji produkcji

szczytowej energii elektrycznej, Gospodarka Paliwami i

Energi ˛ a (2) (2000) 8–12.

A. Zi˛ ebik, J. Zuwała, C. CIASNOCHA, Dobór optymalnej

wielkooeci zasobnika ciepła przy zadanym wykresie

rzeczywistym obci ˛ a˙ze´n w elektrociepłowni z turbin ˛ a

przeciwpr˛ e˙zn˛ a, Energetyka (9) (2001) 507–517.

J. Zuwała, Korzy´sci energetyczne i ekonomiczne zastosowania

zasobników ciepła w elektrociepłowniach,

Gospodarka Paliwami i Energi ˛ a (5-6) (2002) 17–21.

J. Zuwała, Dobór optymalnej mocy turbiny i zasobnika

ciepła dla elektrociepłowni z turbin ˛ a przeciwpr˛ e˙zn˛ a,

Archiwum Energetyki 34 (2 s 185).

A. Zi˛ ebik, A. Fr˛echowicz, J. Zuwała, Analiza porównawcza

jednoprzewodowego systemu przesyłania ciepła

z zastosowaniem zasobników ciepła, Prace Naukowe Politechniki

Warszawskiej. Mechanika (211) (2005) 319–

J. Zuwała, Wpływ" trybu weekendowego" pracy zasobnika

ciepła na struktur ˛ e wytwarzania energii elektrycznej

w elektrociepłowni komunalnej, Ciepłownictwo,

Ogrzewnictwo, Wentylacja.

J. Skorek, W. Kostowski, Model pracy zasobnika ciepła

zintegrowanego z małym układem skojarzonym, Prace

Naukowe Politechniki Warszawskiej. Konferencje 3 (22)

(2002) 1085–1092.


efektywno´sci energetycznej i ekonomicznej skojarzonego

wytwarzania ciepła i energii elektrycznej

przez zastosowanie zasobnika ciepła, Ciepłownictwo,

Ogrzewnictwo, Wentylacja 36 (5) (2005) 8–14.

J. SKOREK, W. KOSTOWSKI, Zasobniki ciepła w

układach kogeneracyjnych—aspekty techniczne i ekonomiczne.

S. Ma´nkowski, Projektowanie instalacji ciepłej wody

u˙zytkowej, Arkady, 1981.

M. Dzierzgowski,Wymiana ciepła oraz dobór elementów

układu płaskich kolektorów słonecznych z zasobnikiem

ciepła, Ph.D. thesis, Politechnika Warszawska (1985).

D. Mangold, Seasonal storage – a german success story,

Sun & Wind Energy 1 (2007) 48–58.

H.-F. Zhang, X.-S. Ge, H. Ye, Modeling of a space heating

and cooling system with seasonal energy storage, Energy

(1) (2007) 51–58.

H.-J. Diersch, D. Bauer, W. Heidemann, W. Rühaak,

P. Schätzl, Finite element modeling of borehole heat exchanger

systems: Part 1. fundamentals, Computers &

Geosciences 37 (8) (2011) 1122–1135.

H.-J. Diersch, D. Bauer, W. Heidemann, W. Rühaak,

P. Schätzl, Finite element modeling of borehole heat exchanger

systems: Part 2. numerical simulation, Computers

& Geosciences 37 (8) (2011) 1136–1147.

H. Paksoy, O. Andersson, S. Abaci, H. Evliya, B. Turgut,

Heating and cooling of a hospital using solar energy coupled

with seasonal thermal energy storage in an aquifer,

Renewable Energy 19 (1) (2000) 117–122.

J. Kim, Y. Lee, W. S. Yoon, J. S. Jeon, M.-H. Koo,

Y. Keehm, Numerical modeling of aquifer thermal energy

storage system, Energy 35 (12) (2010) 4955–4965.

R. Cuypers, N. Maraz, J. Eversdijk, C. Finck, E. Henquet,

H. Oversloot, H. v. Spijker, A. de Geus, Development of

a seasonal thermochemical storage system, Energy Procedia

(2012) 207–214.

H. Kerskes, B. Mette, F. Bertsch, S. Asenbeck, H. Drück,

Chemical energy storage using reversible solid/gasreactions

(CWS)–results of the research project, Energy

Procedia 30 (2012) 294–304.

B. Mette, H. Kerskes, H. Drück, Concepts of longterm

thermochemical energy storage for solar thermal

applications–selected examples, Energy Procedia 30

(2012) 321–330.

B. Michel, N. Mazet, S. Mauran, D. Stitou, J. Xu, Thermochemical process for seasonal storage of solar energy:

Characterization and modeling of a high density reactive

bed, Energy.

J. Fan, S. Furbo, E. Andersen, Z. Chen, B. Perers, M. Dannemand,

Thermal behavior of a heat exchanger module

for seasonal heat storage, Energy Procedia 30 (2012) 244–

T.-M. Tveit, T. Savola, A. Gebremedhin, C.-J. Fogelholm,

Multi-period minlp model for optimising operation and

structural changes to CHP plants in district heating networks

with long-term thermal storage, Energy Conversion

and Management 50 (3) (2009) 639–647.

Hyprotech Corporation, HYSYS.Plant Steady State Modelling



  • There are currently no refbacks.