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Abstract

In this paper a novel Optimal Fuzzy Proportional-Integral-Derivative Controller (OFPIDC) is designed for
controlling the air supply pressure of a Heating, Ventilation and Air-Conditioning (HVAC) system. The
parameters of input membership functions and first order Sugeno output polynomial functions, along with
PID controller coefficients are optimized simultaneously through random inertia weight Particle Swarm Op-
timization (RNW-PSO). Simulation results prove that the proposed controller performs better than a similar
non-optimal fuzzy controller.
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1. Introduction

Heating, Ventilating and Air-Conditioning
(HVAC) mechanisms are used to control environ-
mental variables including: temperature, moisture
and pressure. As with other industrial uses, most of
the processes associated with HVAC are controlled
by PID controllers. The prevalent PID controllers
are extensively applied because of their easy cal-
culations, easy application, appropriate robustness,
high dependability, stabilizing and zero persistent
state error. However, the HVAC mechanism is a
non-linear and time variant mechanism. It is hard to
access favorable tracking control efficiency because
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automatic tuning and self-adapting adjustment of
parameters are a perennial issue with PID con-
trollers. During recent decades various methods
for identifying PID controller parameters have
been presented. In some techniques the open loop
response information of system is used, for instance
the Cohen-Coon reaction curve procedure [1].

In recent years, researchers have extensively used
the fuzzy logic for modeling, identification, and
control of highly nonlinear dynamic systems [2–5].
In [6–13], different combination of control methods
are suggested to improve the efficiency of fuzzy PI or
PID controllers. The adjustment process of PID con-
troller coefficients can be difficult, time-consuming
and costly [14, 15]. Usually a proficient gainer at-
tempts to control the process by adjusting the coef-
ficients of controller according to error and change
rate of error in order to achieve the optimal response.
In this paper the optimal adjustment is obtained by
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random inertia weight Particle Swarm Optimization
(RNW-PSO).

In the HVAC mechanism the supply air pressure
is tuned by changing the speed of a supply air fan.
The relationship between fan speed and pressure
of air source can be expressed by a delayed sec-
ond order transfer function as described by Bi and
Cai [16]. Since in various operating conditions both
fans and dampers show non-linear behavior, even a
well-regulated controller is unable to meet design re-
quirements due to the existing uncertainties in pa-
rameters of the system.

Motivated by the aforementioned research, the
goal of this paper is to present a novel optimal fuzzy
Sugeno-type Proportional Integral Derivative (PID)
controller for regulating the air supply pressure of a
Heating, Ventilating and Air-Conditioning (HVAC)
system. The parameters of input membership func-
tions, first-order Sugeno output polynomial func-
tions, and PID controller coefficients are optimized
simultaneously through random inertia weight Parti-
cle Swarm Optimization (RNW-PSO).

Simulation results indicate that the new optimal
fuzzy-PID controller enjoys faster response, smaller
overshoot and higher accuracy than PID, ANF, and
STFPIC under the normal condition and in the pres-
ence of uncertainties in parameters of the model.

2. Sugeno Type Fuzzy Inference

In this section the Sugeno method of deductive in-
ference for fuzzy systems based on linguistic rules is
introduced. The Sugeno procedure was proposed in
an endeavor to expand a systematic method for pro-
ducing fuzzy rules from a certain input-output data
collection. A generic rule in a Sugeno model, which
has two—inputs x and y, and output z, is as follows:

IF x is A and y is B, THEN z is z = f (x, y)
Where z = f (x, y) is a crisp function. Usually

f (x, y) is a polynomial function of the inputs x and
y. However, in general it can be any public func-
tion characterizing the output of the system inside
the fuzzy area.

When f (x, y) is a constant the inference system is
known as a zero-order Sugeno model.

It is a particular case of the Mamdani system in
which each rule’s resultant is determined as a fuzzy

singleton. When f (x, y) is a linear function of x
and y, the inference system is known as a first-
order Sugeno model, which was used in article [17].
In [17] it was indicated that the output of a zero-order
Sugeno model is a flat function of its input variables
until the neighbor membership functions in the an-
tecedent have adequate overlap.

By contrast, the overlap of the membership func-
tions in the consequent of a Mamdani model does
not have a decisive effect on the smoothness; it is the
overlap of the antecedent membership functions that
determines the smoothness of the resulting system
behavior. In a Sugeno model each rule has a crisp
output presented by a function; for this reason the to-
tal output is gained via a weighted average defuzzi-
fication (Eq. 1). This procedure eschews the time
consuming methods of defuzzification needed in the
Mamdani model. The weighted average method is
one of the most popular methods used in fuzzy ap-
plications as it is a very effective method in terms of
calculation. The algebraic expression is as follows:

Z∗ =
µc (z) · z
µc (z)

(1)

Where Σ represents the algebraic sum while z is
the centroid of each symmetric membership func-
tion. In the design procedure of such a controller
two input linguistic variables are used, namely error
(e) as X and its rate of change (ė) as Y . Increasing
or decreasing the control signal is assumed as out-
put linguistic variable (U). In order to form fuzzy
I f − Then Rules 3 Gaussian membership functions
are considered for input linguistic variables (X) and
(Y), respectively. The general shape of input mem-
bership functions are as follows:

µ (z) = exp
(
(z · c)2

2σ

)
(2)

Where c is the mean and σ is the variance of
each membership function. The parameter z is the
crisp input amount which has to be fuzzified and µ(z)
is its membership function degree with a numerical
value in the interval [0, 1]. Also nine output polyno-
mial functions are defined for first-order Sugeno type
fuzzy inference.

Applying inputs’ membership functions and out-
put polynomial functions will result in a rule-base
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which is composed of 9 rules:
R1 : IF X is Negative and Y is Negative THEN,

U1 = p1x + q1y + r1

R2 : IF X is Negative and Y is Zero THEN, U2 =

p2x + q2y + r2

R3 : IF X is Negative and Y is Positive THEN,
U3 = p3x + q3y + r3

R4 : IF X is Zero and Y is Negative THEN, U4 =

p4x + q4y + r4

R5 : IF X is Zero and Y is Zero THEN, U5 =

p5x + q5y + r5

R6 : IF X is Zero and Y is Positive THEN, U6 =

p6x + q6y + r6

R7 : IF X is Positive and Y is Negative THEN,
U7 = p7x + q7y + r7

R8 : IF X is Positive and Y is Zero THEN, U8 =

p8x + q8y + r8

R9 : IF X is Positive and Y is Positive THEN, U9 =

p9x + q9y + r9

As shown in Fig. 1, the above nine IF-THEN
rules are combined together in the form of first-order
Sugeno model.

3. Particle Swarm Optimization

The PSO algorithm is a partly new population-
based heuristic optimization method which is based
on a metaphor of social interaction, specifically bird
flocking. The main benefits of PSO are: 1) The cost
function’s gradient is not needed, 2) PSO is more
compatible and robust than other classical optimiza-
tion techniques, 3) PSO guarantees convergence to
the optimum solution, and 4) compared with GA,
PSO takes less time for each function evaluation as it
does not apply many GA operators such as mutation,
crossover and selection operator.

In PSO, any nominee solution is named “Particle”.
Each particle in the swarm demonstrates a nominee
solution to the optimization problem and if the solu-
tion is composed of a series of variables, the particle
can be a vector of variables. In PSO, each particle
is flown through the multidimensional search space
regulating its position based on its momentum and
both personal and global histories. Then the parti-
cle uses the best position faced by itself and that of
its neighborhood to position itself toward an optimal
solution. The appropriateness of each particle can be

assessed based on the cost function of optimization
problem. At each repetition, the speed of every par-
ticle will be computed as follows:

vi (t + 1) = ωvi (t)+c1ri (Pid − xi (t))+c2r2

(
Pgd − xi (t)

)
(3)

Where xi (t) is the present position of the parti-
cle, pid is one of the finest solutions this particle has
achieved and pgd is one of the finest solutions all the
particles have achieved. Finally, r1 and r2 are two
random numbers in the range [0, 1]. Having com-
puted the speed, the new position of each particle will
be computed as follows

xi (t + 1) = xi (t) + vi (t + 1) (4)

The PSO algorithm is replicated using Eqs. 3
and 4, which will be updated at each repetition until
the pre-defined number of generations is achieved.

Although Standard PSO (SPSO) includes some
significant improvements by providing a high rate of
convergence in particular problems, it does demon-
strate some deficiencies. It is shown that SPSO has a
weak capability to look for a fine particle due to the
lack of a speed control mechanism. Most of the pro-
cedures were tried in an attempt to ameliorate the ef-
ficiency of SPSO through applying changeable iner-
tia weight. The inertia weight is essential for the effi-
ciency of PSO, which equilibrates global exploration
and local exploitation capabilities of the swarm. A
large inertia weight simplifies exploration, but it pro-
longs the convergence of the particle. However, a
small inertia weight leads to rapid convergence, but
it sometimes results in a local optimum.

Therefore, different inertia weight conformity al-
gorithms have been recommended in the litera-
ture [18]. In 2003 Zhang [19] studied the effect of
random inertia weight on PSO (RNW-PSO), present-
ing empirical results which proved its superior effi-
ciency compared to LDW-PSO [20]. Eberhart and
Shi [21] recommended a random inertia weight fac-
tor for tracking dynamic systems. In this improve-
ment, the inertia weight factor was set to change ran-
domly based on the following equation:

ω = 0.5 +
Rand

2
(5)
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Figure 1: The Sugeno fuzzy model

Table 1: The used parameters of RNW-PSO

Parameter Value

Size of the Swarm 50
Dimension of Problem 38
Maximum Number of iterations 100
Cognitive Parameter C1 1
Social Parameter C2 1
Constriction Factor C 1

where rand was a uniformly distributed random
number inside the interval [0, 1]. Before proceeding
with the optimization operations, a performance cri-
terion should be first defined.

Generally, a heuristic algorithm like PSO only re-
quires the cost function to be checked for guidance
of its search. It no longer requires information about
the system. So, in this paper, the Least Mean Square
(LMS) of error is applied. The parameters of RNW-
PSO are also listed in Table 1.

4. The Proposed Control Method

The general scheme of the proposed controller is
shown in Fig. 2. The two inputs of the controller are
the error e and the change rate of error ė, respectively
and the output of the controller is U. The main short-
age of the optimal fuzzy-PID controller is the lack
of systematic approaches to define fuzzy rules and
fuzzy membership functions. Most fuzzy rules are
based on human knowledge and differ from one per-
son to another despite the same system performance.
Hence, it is naive to assume that the given expert’s
knowledge captured in the form of the fuzzy con-
troller leads to optimal control. Therefore, an effi-
cient approach for tuning membership functions and
control rules without trial and error is evidently re-
quired.

Accordingly, the idea of employing RNW-PSO al-
gorithm to achieve best rising time (tr), settling time
(ts), % peak overshoot (Mp), steady-state error (E ss)
is represented [22]. In applying Gaussian member-
ship functions three different cases arise: 1) Gaus-
sian membership functions with the same means and
variances, 2) Gaussian membership functions with
the same means and variable variances, and 3) Gaus-
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Figure 2: Optimal Fuzzy-PID controller

Table 2: Optimal parameters of Gaussian membership func-
tions

Input
variables

Membership
functions

[Variance,
Mean]

Negative [0.6021,
-1.4923 ]

Error (E) Zero [0.6021,
0.0689]

Positive [0.6021,
0.5149]

Negative [0.2936,
-0.7016]

Change of
Error (CE)

Zero [0.2936,
0.2458]

Positive [0.2936,
0.0550]

sian membership functions with variable means and
the same variances. In [23] an optimal fuzzy-PI con-
troller is designed for a nonlinear delay differential
model of glucose-insulin regulation system, and it
is shown that Gaussian membership functions with
variable means and the same variances have better
performance in controlling this system. Therefore,
the same idea is applied here.

The specifications of input and output variables
are given in Tables 2 and 3, respectively. Further-
more, the optimal parameters of the PID controller
are given in Table 4.

Table 3: Optimal parameters of output polynomial functions

Output polynomial
functions

[qi, pi, ri]

U1 = p1x + q1y + r1 [0.6173, 0.0588,
0.3469]

U2 = p2x + q2y + r2 [-0.0056, 0.0102,
-0.8901]

U3 = p3x + q3y + r3 [-0.8860, -0.1164,
0.4295]

U4 = p4x + q4y + r4 [-0.4039, -0.7338,
-1.1432]

U5 = p5x + q5y + r5 [0.5043, -0.2675,
-0.1391]

U6 = p6x + q6y + r6 [0.2194, 0.4623,
-0.9929]

U7 = p7x + q7y + r7 [-0.6865, 0.0261,
-0.4878]

U8 = p8x + q8y + r8 [-0.1315, -0.4345,
-0.2374]

U9 = p9x + q9y + r9 [0.3640, 0.2626,
-1.5937]

5. Simulation and Results

In the HVAC system, outside air is mixed with re-
turn air from the building. Then the mixed air (sup-
ply air) flows through the cooling coil via a filter by
means of a supply air fan. In the HVAC system, the
supply air pressure is tuned through the speed of a
supply air fan. Increasing the fan speed will increase
the supply air pressure, and vice versa. Variations
of supply air pressure directly affect the temperature.
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Table 4: Optimal parameters of PID controller

Parameter Value

Proportional Gain (Kp) 1.1814
Derivative Gain (Kd) 0.0473
Integral Gain (Ki) 1.5056

Figure 3: Obtained membership functions of input 1

MATLAB software is used to simulate the proposed
controller. The transfer function of the supply air
pressure loop under normal circumstances is as fol-
lows:

G (s) =
0.81e−2s

(0.97s + 1) (0.1s + 1)
(6)

where gain (K) = 0.81, τ1 = 0.97, τ2 = 0.1 and
dead time (δ) = 2 sec. For this process weighting
parameters are defined as Ne = 0.9, Nė = 5 and
Nu = 2.5. It should be mentioned that τ1 and τ2 are
the time parameters of the transfer function of the
supply air pressure loop. Input membership func-
tions of the optimal fuzzy-PID controller, namely er-
ror (Input 1) and change of error (Input 2), are shown
in Fig. 3 and 4, respectively. These Figs. show that
RNW-PSO improved the logical sequence of mem-
bership functions. For instance, about input 2 the
membership function CE-P comes before CE-Z.

This issue leads to a nonlinear control operation
surface as demonstrated in Fig. 5.

In order to evaluate the controller performance
against the existing uncertainties in parameters of
the nominal model three different transfer functions

Figure 4: Obtained membership functions of input 2

Figure 5: Control Surface

were introduced. To investigate this issue the applied
transfer functions in [24] are used.

1. when gain (K) = 0.81, τ1 = 0.2, τ2 = 2 and
dead time (δ) = 2 sec., then the transfer function
of the supply air pressure loop is as follows:

G (s) =
0.81e−2s

(0.2s + 1) (2s + 1)
(7)

For this process weighting parameters are de-
fined as Ne = 0.9, Nė = 15 and Nu = 0.3.

2. when gain (K) = 1.2, τ1 = 0.97, τ2 = 0.1 and
dead time (δ) = 3 sec., then the transfer function
of the supply air pressure loop is as follows:

G (s) =
1.2e−3s

(0.97s + 1) (0.1s + 1)
(8)
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Figure 6: Performance of the transfer function: G (s) =
0.81e−2s

(0.97s+1)(0.1s+1)

Figure 7: Performance of the transfer function: G (s) =
0.81e−2s

(0.2s+1)(2s+1)

For this process weighting parameters are de-
fined Ne = 0.9, Nė = 3 and Nu = 1.

3. when gain (K) = 1.2, τ1 = 0.97, τ2 = 0.1 and
dead time (δ) = 4 sec., then the transfer function
of the supply air pressure loop is as follows:

G (s) =
1.2e−4s

(0.97s + 1) (0.1s + 1)
(9)

For this process weighting parameters are de-
fined as Ne = 0.9, Nė = 3 and Nu = 1.

In Figs. 6–9 and Table 5 we can see that the supply
air pressure loop of HVAC acts satisfactorily under
nominal transfer function and existing uncertainties

Figure 8: Performance of the transfer function: G (s) =
1.2e−3s

(0.97s+1)(0.1s+1)

Figure 9: Performance of the transfer function: G (s) =
1.2e−4s

(0.97s+1)(0.1s+1)

in parameters of the model. Table 6 implies that both
the rise time and settling time are highly appropri-
ate. Peak overshoots are also insignificant when the
Optimal Fuzzy-PID Controller (OFPIDC) is applied.

Furthermore, the proposed controller in this pa-
per is much less complicated than the existing non-
optimal fuzzy controller in [18]. The proposed con-
troller in this paper has only 9 rules, whereas with
these limited rules the design requirements are sat-
isfied. But in [18] in order to achieve satisfactory
results 49 rules are defined. This fact proves the su-
periority of the proposed controller in this paper over
the controller proposed in [18].
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Table 5: Performance analysis of OFPIDC for different HVAC-Supply Air Pressure Loop

Transfer Function of the
Supply Air Pressure Loop

Rise Time
tr, sec.

Settling
Time ts, sec.

Peak
Overshoot

Mp, %

Steady State
Error Ess, %

G (s) = 0.81e−2s

(0.97s+1)(0.1s+1) 2.58 4.74 0.00 0.12
G (s) = 0.81e−2s

(0.2s+1)(2s+1) 4.44 8.17 0.00 0.01
G (s) = 1.2e−3s

(0.97s+1)(0.1s+1) 2.16 5.88 0.00 0.08
G (s) = 1.2e−4s

(0.97s+1)(0.1s+1) 2.26 6.75 0.00 0.06

Table 6: Comparison between performance of PID, ANF, STFPIC and OFPIDC under the normal condition and under existing
uncertainties in parameters of model

Transfer Function of the Supply Air
Pressure Loop

Controller
Type

Peak Overshoot
Mp, %

Settling Time ts,
sec.

PID 3.9 6.7
ANF 3.5 7.5

G (s) = 0.81e−2s

(0.97s+1)(0.1s+1) STFPIC 0.00 3.6
OFPIDC 0.00 4.74

PID 17.9 16.2
ANF 0.9 10.6

G (s) = 0.81e−2s

(0.2s+1)(2s+1) STFPIC 0.088 8.9
OFPIDC 0.00 8.17

PID 63 37
ANF 56 19

G (s) = 1.2e−3s

(0.97s+1)(0.1s+1) STFPIC 17.6 6
OFPIDC 0.00 5.88

PID 100 120
ANF 59 32

G (s) = 1.2e−4s

(0.97s+1)(0.1s+1) STFPIC 25 6.9
OFPIDC 0.00 6.75
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6. Summary/Conclusions

In this paper an optimal fuzzy-PID controller was
suggested for the supply air pressure control loop of
a Heating, Ventilation and Air-Conditioning (HVAC)
system. Simulation results indicated that the op-
timal fuzzy-PID controller enjoyed faster response,
smaller overshoot and higher accuracy compared
with PID, Adaptive Neuro Fuzzy (ANF) method and
Self-Tuning Fuzzy PI Controller (STFPIC) under the
normal condition and in the presence of uncertain-
ties in parameters of the model. The new optimal
fuzzy-PID controller can be extensively applied in
the HVAC industry.
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