Computational study of an aerodynamic flow through a micro-turbine engine combustor

Marian Mirosław Gieras, Tomasz Stańkowski

Abstract


The study presents 3-D numerical simulations of aerodynamic flow inside micro-turbine engine combustion chamber. The process of creation of a numerical grid and its properties are described, and then on the basis of gas-dynamic calculation of the theoretical engine cycle boundary conditions were specified. For the assumed boundary conditions, numerical simulations of aerodynamics of “cold” air flow through the combustion chamber (without fuel supply to the interior) were performed. Numerical experiment was also conducted, allowing the investigation of the influence of thermal energy supply into the combustion chamber on the aerodynamic flow through the chamber. The work ends with discussion of the results, in particular concerning the loss of pressure in the combustion chamber and possible design changes to minimize them.

Keywords


aerodynamic flow, engine combustor, pressure loss

Full Text:

PDF

References


Model Jet Engines, Traplet Publications Ltd, 2005, T. Kamps.

Home Built Model Turbines, Traplet Publications Ltd, 2005, K. Schreckling.

Gas Turbines for Model Aircraft, Traplet

Publications Ltd, 2003, K. Schreckling,

Guide to Microturbines, Fairmont Press, 2004, B. F. Kolanowski

G. Bouldier, L. Y. M. Gicquel, T. Poinsot, D. Bissieres and C. Berat, Comparison of LES, RANS and experiments in aeronautical gasturbine combustion chamber. Proceedings of the Combustion Institute. Vol. 31, No. 2, (2007), 3075-3082.

C. A. Gonzales, K. C. Wong and S. Armfield, Computational study of a micro-turbine engine combustor using large eddy simulation and Reynolds average turbulence models, ANIZAM J. 49, (2008), 407-422.

P. D. Marsh, RCU Review: Twenty Years of Micro-turbojet Engines, Magazine “Horizon, (2003), 1-8

M. D. Agrawal and S. Bharani, Performance Evaluation of a Reverse-flow Gas Turbine Combustor using Modified Hydraulic Analogy. The institute of Engineers India. Journal MC, (2004), 34-44.

H. S. Lee and J. J. Yoon, The Study on Development of Low NOx Combustor with Lean Burn Characteristics for 20 kW class Microturbine, Proceedings of ASME Turbo Expo, 14-17 June, Viena, Austria, 2004.

R. Tuccillo and M. C. Cameretti, Comparing different solutions for the micro-gas turbine combustor, Proceedings of ASME Turbo Expo, 14-17 June, Viena, Austria, 2004.

S. Adahia, A. Iwamotoa, S. Hayashib, H. Yamadab and S Kaneko, Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in multi-stage gas turbine combustor, Proceedings of the Combustion Institute. Vol. 31, No. 2, (2007), 3131-3138.

S. Antas and P. Wolański, Obliczenia

termogazodynamiczne lotniczych silników

turbinowych, Wydawnictwo Politechniki

Warszawskiej, Warszawa, 1989.

P. Dzierżanowski, Turbinowe silniki odrzutowe, Wydawnictwa Łączności i Komunikacji, Warszawa, 1983.

S. James, J. Zhu and M. Anand, Large-Eddy Simulation as a gas turbine combustor at different pressure and swirl conditions, Applied Thermal Engineering, Vol. 19, No. 19, 1999, pp. 949-967.

M. Gieras, Komory spalania silników turbinowych, organizacja procesu spalania, Oficyna wydawnicza Politechniki Warszawskiej, Warszawa, 2010.

A. H. Lefebvre, Gas Turbine Combustion, Taylor & Francis, Ann Arbor, 1999.

K. Hunecke, Fundamentals of Theory, Design and Operation, Motorbooks, International Publishers and Wholesalers, 1997.

R. Łapucha, Komory spalania silników turboodrzutowych, Wydawnictwa Naukowe Instytutu Lotnictwa, Warszawa, 2004.

J. D. Mattingly, Aircraft Engine Design, American Institute of Aeronautics and Astronautics, 2002.


Refbacks

  • There are currently no refbacks.