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PROBLEMS OF MODELING FLOW 
AND HEAT TRANSFER IN POROUS MEDIA 

The paper presents an up-to-date overview of the theoretical and the engineering application 
aspects of the porous media. Problems which arise in modeling the flow and heat transfer 
phenomena by momentum and energy equations, and which are not present in the correspond-
ing free-fluid flow, are discussed in more detail. Such problems arise from the higher order 
terms in the momentum equation and from thermal dispersion or local thermal equilibrium in 
the energy equation. The general class of boundary conditions which differentiate the flow 
phenomena from that of corresponding free-fluid flow have also been discussed in more detail. 
The channeling phenomena caused by the nonhomogeneity of porosity near the wall is 
presented and models which approximate the porosity variation are demonstrated. The boundary 
effects and their influence on the porous media have also been analyzed. The important aspects 
of engineering applications of the porous media and other applications of the macroscopic ap-
proach typical for porous media were also discussed. Finally conclusions corresponding to 
problems met in the modeling of flow and heat transfer in porous media are drawn. 

NOMENCLATURE 

a — specific surface area (fluid to solid contact) [m2] 
cp — specific heat [ k J / k g • К _ 1 ] 
dp — spherical particle diameter [m] 
h - fluid to solid heat transfer coefficient [kW ·m"2 • К 1 ] 
k - thermal conductivity [kW · m · К ] 
К - permeability [m 2] 
Ρ — pressure [kN/m2] 
t — time [s ] 
Τ - temperature [°C] 
ν — velocity vector [m-s _ 1 ] 
W - characteristic length of the porous bed (e.g. height and/or width and/or 

diameter [m]) 
ν í-nnrHinatp v p r t n r T m i 



Greek symbols 

α — total diffusivity tensor [m 2 ·s" 1 ] 
ε — the porosity of the porous media 
μ — dynamic viscosity [kg·m"1-s"1] 
ρ — density [kg-m - 3 ] 

Superscripts 

α — phase 
/ — fluid phase 
s — solid phase 

Subscripts 

e — effective 
/ — fluid phase 
s — solid phase 
sf — solid to fluid interface 

Other symbols 

<·> — phase volume averaging 
<·>α — intrinsic volume phase averaging over the a phase 
{·} — ensemble averaging 

INTRODUCTION 

The study of transport phenomenon in porous media have primarily been ini-
tiated by the research activity in geophysical systems and chemical enginee-
ring industry. But since the recognition of the engineering importance of the 
porous media a new area of research have been established which is equiva-
lent to that of the free-fluid flow. Therefore, the subject of the transport phe-
nomena through fluid-saturated porous media represents an important area of 
rapid growth in the contemporary heat transfer research. The study of trans-
port phenomena in porous materials has attracted considerable attention, and 
has been motivated by a broad range of engineering applications including: 
1. Agricultural applications: e.g. fermentation process in food industries, free-

ze drying of food products, grain storage, soil heating to increase the gro-
wing season. 

2. Environmental applications: e.g. ground water pollution, ground water sys-
tems, storage of radioactive waste, water movement in geothermal reservoirs. 

3. Industrial applications: e.g. artificial freezing of ground as a structural support 
and as a water barrier for construction and mining purposes, crude oil pro-
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duction and recovery systems, porous radiant burners (PRBs), post accident 
heat removal (PAHR), solidification of castings, study of heat transfer phe-
nomenon of buried electrical cables and transformer cables, fluidized bed 
combustion. 

4. Thermal conversion and storage systems: e.g. catalytic reactors, geothermal 
systems, packed beds, fluidized bed, heat pipes, sensible, latent and ther-
mochemical energy storage systems. 
These diverse applications have made it essential for the thermal engineering 

community to focus its research interest on understanding the fundamentals of 
transport phenomena in porous media. Moreover, porous media provide a new 
approach to formulate transport phenomena that otherwise been modeled using 
the well known classical approaches. 

1. STUDY OBJECTIVE 

Porous media are proven to operate in most of the corresponding free fluid 
ranges. They can be used as an insulator (for all temperature ranges) and can be 
used as a heat transfer promoter for either sensible or latent heat transfer. This 
makes the porous media a kind of a super material which needs to be thoroughly 
studied in order to be fully utilized. Different transport models are available in 
the literature which are used to model energy and momentum transport in porous 
media. These models are phemonologically based upon governing equations 
which are inherited from the corresponding free-fluid flow. These inherited 
equations are modified by the use of the macroscopic concept for the porous 
media to meet its modeling demand. This brings new transport phenomena e.g. 
local thermal equilibrium and thermal dispersion in the energy equation and 
higher order terms and interfacial boundary problems in the momentum equation 
which are not present in modeling of the corresponding free-fluid flow and 
which need to be studied thoroughly experimentally and theoretically in order to 
know their role and contribution. Phase change, combustion and radiation heat 
transfer in porous media provide another class of problems which should be 
studied in detail in order to fully understand the thermal behavior of the porous 
media. Consideration of all of these phenomena and other modes of heat transfer 
makes mathematical modeling of transport phenomena in porous media very 
tedious and difficult to solve and simple modeling provide a challenge which 
need to be resolved. In spite of the extensive research activity, the study of the 
transport phenomena in porous media can be considered to be in the stages 
which only in future may provide a complete theory. This study is intended to 



give a thorough overview of up-to-date state of the art in modeling the flow and 
heat transfer in porous media. Special attention is given to ambiguities found in 
modeling a well as to unsolved problems. 

This study is primarily assembled to refer to: 
1. Saturated porous media, i.e. the voids are completely filled with fluid. 
2. Two phase flow system, i.e. solid and a single fluid phases only, however, 

the discussion is of great importance to multiphase flow porous system, for 
which the governing equations can be extended without any difficulty. 

3. The porous media are assumed to be connected (i.e. the pores are assumed to 
be in communication between each other and so is the fluid flow through 
them). 

4. Rigid (nondeformable) and fixed porous media are considered. 
5. No heat generation is assumed. 

2. CHARACTERISTIC FEATURES OF THE POROUS MEDIA 

There is a large variety of natural and artificial porous materials encountered 
in practice, such as: soil, sandstone, limestone, ceramics, foam, rubber, bread, 
lungs, and kidneys. Aquifers (from where water is pumped), sand filters (for 
purifying water), reservoirs (which yield oil or gas), packed and fluidized beds 
in the chemical engineering and the root zone in agricultural industry may 
serve as additional examples of porous media domains. Common to all of 
these examples is the observation that part of the domain is occupied by 
a persistent solid phase, called the solid matrix. The remaining part is called 
the void space, which may be occupied either by a single phase fluid or 
a number of fluid phases [4]. In the last case each phase occupies a distinct 
separate portion of the void space. Therefore, a porous material may be re-
garded as a material where the solid portion is continuously distributed throu-
ghout the whole volume to form a loosely connected matrix and voids (pores) 
inside the solid matrix which is filled with fluids [4]. For a connected porous 
medium the porosity ( ε ) is defined as the fraction of the total volume of the 
medium that is occupied by void space. Therefore, (1 - ε) is the fraction that 
is occupied by the solid [4]. For a disconnected porous media (i.e. some of the 
pore space is separated from the remainder) an effective porosity, which is the 
ratio of the connected void to the total volume, has to be defined. A system of 
identical spherical particles of small radius and equal sizes affords a simple 
model of a porous body [26]. The spherical particles may be arranged in diffe-
rent ways, e.g. they may have a loose packing (cubic arrangement, ε = 47,64%) 
or dense packing (hexagonal arrangement, ε = 25,95%). 
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3. MICROSCOPIC AND MACROSCOPIC CONTINUUM 
DESCRIPTION OF POROUS MEDIA 

Flow through porous media is characterized by complex geometry and by 
intimate contact between the solid matrix and the fluid. The extent of this 
contact depends on the characteristic features of the porous media, e.g. poro-
sity. The microscopic nature of the flow is extremely complicated and ran-
dom. The description the heat transfer inside the tortuous void passages in 
such a medium by taking into account the interaction between different me-
chanisms of transport does not appear to be possible analytically. Therefore, 
the solutions obtained by applying the classical models of fluid mechanics to 
both the fluid and solid phases are misleading and have no interest in practice. 
This is also due to the lack of information concerning the microscopic confi-
guration of the interface boundaries and the fluid paths as it moves inside the 
porous media [4]. Therefore, a continuum model has to be defined in order to 
simulate mathematically the transport phenomena occurring in these media. 
A quasihomogeneous continuum model is defined for the porous media for 
which the phases are assumed to behave as a continuum that fills up the entire 
domain (i.e. each phase occupies its own continuum). The space occupied by 
these overlapping continue is referred to as the macroscopic space [4]. This 
continuum model of the porous media has the following advantages [4]: 
1. It does not need the exact configuration of the interface boundaries to be 

specified; acquiring the knowledge of which is an invisible task anyway. 
2. It describes processes occurring in porous media in terms of differentiable 

quantities, thus enabling the solution of problems by employing methods of 
mathematical analysis. 
These advantages are at the expense of the loss of detailed information 

concerning the microscopic configuration of the interface boundaries and the 
actual variation of quantities within each phase [4]. But the macroscopic ef-
fects of these factors are still retained in the form of coefficients, whose struc-
ture and relationship to the statistical properties of the void space (or phase) 
configuration can be analyzed and determined. 

4. METHODS OF AVERAGING 

Two different averaging methods are broadly used in formulation of the mac-
roscopic equations for heat and fluid flow in porous media. These are volume 
and ensemble averaging which will be demonstrated below. Because the volu-
me averaging is more widely accepted, the governing equations for flow and 



heat transfer in porous media, in this monograph will be demonstrated by 
using the volume averaging approach. 

4.1. VOLUME AVERAGING 

In the volume averaging approach, the mean values of phase variables are 
taken over an elementary volume (EV) centered at a point (x) within the 
macroscopic space. The averaged values are referred to as macroscopic values 
of the considered variables. Therefore, the phase volume averaging of any 
arbitrary field quantity Ωα(χ, t) of the α-phase is obtained by performing an 
integration over the elementary volume (UQ) surrounding the point in question 
(x) (Fig. 1), this is given by [4] 

( Ω β ( Μ ) = j r f Cia(x',t:x)dUa(x') ( 1 ) 

This indicates that the total 
amount of the extensive quantity of the a -pha-

se is averaged over the entire volume U0 of the EV. When the volumetric 
averaging of the extensive quantity is taken over the volume U0a(x t), which is 

Fig. 1. Definition of the elementary volume (EV) [4] 

occupied by the α -phase only, then the intrinsic phase averaging is defined, 
which is given by [4] 

(Ωα(χ, t) у = —1— f Ωα(χ', t:x) dUa(x') ( 2 ) 
0 a(*.') u0a(x,t) 
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Both averages are related by [4] 

<Q(M. ) = εα(Ωα(*,ί))α (3) 

In general, the intrinsic phase volume averaging is used to develop the basic 
governing equations, particularly when there is more than one fluid phase 
and/or fluids saturated the porous media. Whereas the phase volume averaging 
is used when there is only one fluid phase saturated in the porous media. 
However, in this case intrinsic phase volume averaging may be used when 
two-energy equation model is applied. 

4.2. THE ENSEMBLE AVERAGING 

In the ensemble averaging approach the development of the macroscopic 
equations implies averaging over an ensemble of configurations. The configu-
ration (A) is regarded as a specific distribution of the constituent in the po-
rous media. Any change in the position of constituents with respect to the 
boundaries of the medium is recognized as a different configuration. This set 
of configurations constitutes an ensemble of realizations (sample space). If 
a random probabilistic function p(A) is defined for this sample space, then the 
ensemble average of any function Ωα(ί, χ) can be written as [14] 

This ensemble averaging approach has the following advantages [3]: 
1. It conceptually defines the properties in space at a given point, without 

having to define a volume over which these properties must be integrated. 
2. It provides means for studying the inherent heterogeneity and variability of 

these properties in space, and for evaluating the uncertainty of any method 
of estimation of their values. 

3. It enables to introduce information about the statistical description of the 
microstructure of the porous media in an easy way. 

Several momentum flow models have been proposed to model the fluid flow 
through a porous media. The aim was to develop a macroscopic equation 
which matches the empirical observations and which converges to the corres-
ponding free-fluid flow when the porosity of the porous media tends towards 

{Ωα(ί,*)} =/Ωα(ί,χ/Α)ρ(Α)άΑ (4) 

5. MOMENTUM TRANSPORT 



that mismodeling of the velocity distribution will strongly affect the tempera-
ture distribution. Therefore, there is a need to focus on these momentum mo-
dels before considering any model describing the temperature distribution. 

The first momentum equation which describes the transport phenomenon of 
the fluid flow through porous media were deduced experimentally in 1856 by 
Darcy. Since then several flow models which are based on phenomenological 
observations rather than analytical approaches have been developed to match 
the same purpose. 

5.1. DARCY FLOW MODEL 

The overwhelming majority of existing studies pertinent to the phenomena of 
heat and fluid flow through porous media makes use of the Darcy Flow Mo-
del '(Darcy law). This model features a linear momentum equation, which 
states (in the absence of gravity force) that the volumetrically averaged velo-
city in any direction is proportional to the pressure gradient in that direction. 
Mathematically it can be written as [18] 

<v> = f « G > - v m (5) 

where G = {p^g is the body force due to gravity, where: g is the gravitatio-
nal force vector, PF, μ / and p / are the pressure, viscosity and density of the 
fluid phase, respectively. The hydraulic conductivity (permeability) К can be 
best understood as an analogue to the thermal conductivity. For example, for 
a porous media, composed of identical spherical particles of diameter d , the 
value of the permeability can be calculated using the Cozeny-Karman model 
given by [8] 

d p B 3 

~ 36 C(1 - ε) ( 6 ) 

The value of the constant (C) depends on the type of packing of the porous 
bed. 

Darcy law represents the resistance which is the friction offered by the 
solid particles to the fluid flow [20]. Since the development of Darcy flow 
model several attempts have been made to derive it analytically starting from 
the Navier-Stokes equation. These derivations show that the Darcy flow model 
is restricted to flow in which the viscous forces dominate over the inertia 
forces. Assuming an appropriately defined Reynolds number, Reá (based on 
the average pore diameter d0), the general criteria for the applicability of the 
Darcy flow model is [31] 

R 4 Ξ \9f{v)dJb\ < 1. (7) 



Problems of modeling flow and heat transfer in porous media 63 

One of the main advantages of the Darcy law is that it makes the momen-
tum equation linear and thus removes a great amount of difficulty in solving 
the governing equations. However, because the Darcy flow model is of order 
one less than the Navier-Stokes equation, the no-slip hydrodynamic boundary 
condition cannot be applied and therefore the maximum velocity is predicted 
to occur at the impermeable surface. 

5.2. FORCHHEIMER-DARCY FLOW MODEL 

As mentioned above, deviations from Darcy law are known to occur when 
Reynolds number based on the mean pore diameter exceeds unity. This limita-
tion encouraged Forchheimer to propose a velocity square term in addition to 
the Darcy term to account for the inertia effects in the pressure drop, as the 
fluid makes its way through the porous media. Forchheimer-extended Darcy 
flow model is considered to be the earliest non-Darcian flow models. Mathe-
matically it can be written as [8] 

where b is the Forchheimer inertial coefficient. For porous media composed 
of identical spherical particles it is given by [8] 

5.3. BRINKMAN-DARCY FLOW MODEL 

Brinkman argued that the momentum equation for the porous media must 
reduce to the viscous flow limit and advocated that classical frictional terms 
should be added to Darcy law as the permeability is high. Brinkman conside-
red the viscous force exerted on a dense swarm of particles by a fluid flowing 
through them. The force acting on a single particle in a slow stream is calcu-
lated from the Stokes flow velocity field, while the flow through a swarm of 
particles is described by the Darcy flow model for flow through a porous 
media. Brinkman reasoned that the force on a particle situated in a swarm of 
particles could be calculated as if it were a solid particle imbedded in a porous 
medium. Therefore, Brinkman represented the porous medium by modifying 
Stokes equation, adding a Darcy resistance term to it, so that the effect of the 
other particles is treated in an average sense [27]. Mathematically, the Brink-
man-extended Darcy flow model can be written as [30] 

(8) 

b = 0,0117(^/(1 - ε) (9) 

= (G) - V(Ρ)) + μ„ν2 (υ) (10) 



The Brinkman-extended Darcy flow model removes the deficiency of 
Darcy law in the sense that it is applicable to media with high permeability 
and can account for all boundary conditions at a solid surface or at a fluid 
interface. The use of the Brinkman-extended Darcy flow model has been 
hampered, because of the uncertainty associated with the coefficient (με), 
which acts as an effective viscosity. In the core of flow through a porous 
media the effective viscosity can be either greater or smaller than the fluid 
viscosity. The usual practice is to assume that (μβ = μ^). Nield [30] argued 
that the value ( μ β / μ ρ was a function of porosity where its value rose slightly 
above one as the porosity decreased from unity, and attained a maximum at 
about ε = 0,8 and decreased rapidly when ε <0 ,7 . The effective viscosity 
has also been determined experimentally [16] for a steady flow through 
a wall-bounded porous media. Its value has been shown to lie within the range 
of με = (5,1 to 10,9) μ / . 

5.4. DARCY-BRINKMAN-FORCHHEIMER FLOW MODEL 

During further studies of fluid flow through porous media, the Forchheimer-
-Darcy and Brinkman-Darcy extended flow models were joined together and 
generalized as the Darcy-Brinkman-Forchheimer flow model (abbreviated DBF 
Flow Model) which can be written in the following form [24] 

It has been found that the ratio of the permeability to the kinematic visco-
sity (K/Vj) interpreted as the viscous time is very small (for example, a typi-
cal value of the viscous time for water flowing through a packed bed of sand 
is about 10"5 s). Therefore, the time derivative term in the above equation can 
be neglected [31]. However, the presence of the time derivative is necessary 
when stability of the porous bed is concerned as shown by Georgiadis and 
Catton [15]. The scaler product of the velocity and its gradient known as the 
convective term is due to Wooding [23], who introduced this term based on 
analogy with the Navier-Stokes equation for a pure fluid medium [23]. Howe-
ver, this term also contributes to the inertia effects it is clear that its reasoning 
is different from that of the Forchheimer inertia term. Although it is important 
at high velocity and/or high porosity media its role is not as clear as that of 
the Forchheimer inertia term and can be best understood as to that of the 
corresponding free-fluid flow. Its inclusion makes the solution of the momen-
tum equation more difficult. And so forth the discussion of the inertia effect 
will be related to the Forchheimer inertia term only. Choi and Kułacki [10] 

ε dt ε 
(11) 
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have studied the influence of the inertial and viscous terms on the velocity 
profile. Their results (Fig. 2) show that the viscous term contributes mostly to 
the deviation from the result obtained when Darcy's flow model is used, 
while the contribution of the inertia term is negligible. 

Rayleigh number (based on the heat flux.q) 
Ra = gßKW*/qav,km 

Fig. 2. Effects of inertia and viscous terms on the velocity distribution for natural convection in 
a porous layer [10] 

Starting from the Navier-Stokes equations and utilizing the volume avera-
ging technique, another form of the generalized flow model was proposed by 
Hsu and Cheng [20] 

Μ d(v) ((υ) · V) (») 
dt 

(G) - V(Pf) + μ/V2 (и) + В (12) 

where В is the total drag force per unit volume (body force) due to the pre-
sence of the solid particles. A closure scheme were developed to determine 
the drag force due to the solid particles and it is given by [20] 

Μ 
к 

(13) 

Therefore, equation (12) can be rewritten as 

Μ 3(υ) , ((») ·V) (v) 

dt ε 
(G) - W(Pf) + μ/7ζ (υ) 

(ν) , ν b(v)\(v)\ 
(14) 

In eq. (11) the inertia term is proportional to the permeability, whereas in 



Forchheimer term in eq. (14) is more pronounced when inertia effect is consi-
dered. As the permeability К - °° and consequently the porosity is unity, 
therefore the far right-hand sides of both eq. (11) and eq. (14) vanish and give 
access to the completely vectorial Navier-Stokes equation for Newtonian con-
stant property flow. Therefore, the Darcy flow model provides the upper limit 
to the resistance offered by the porous matrix, while the modified Navies-Sto-
kes equations (11 and 14) provide the lower limit. 

As noted, Darcy model is the simplest one to use, but is limited to either 
slow flow and/or low porosity porous media. However, its main limitation is 
that the no-slip boundary condition cannot be imposed. Extension of the 
Darcy Flow model to high velocity and/or high porosity media provided by 
the Forchheimer-Darcy flow model still retains these deficiencies. The Brink-
man-Darcy model removes the main deficiency inherited from the use of the 
Darcy model and enables the no-slip condition to be imposed, however it is 
not suitable for high velocity and/or high porosity media. Consideration of the 
inertia effects results in the DBF flow model which is a more general flow 
model, eq. (11) and eq. (14), but its solution is not an easy task. 

The limitations of these models are justified since they are formulated on 
phenomenological observations. Therefore, the choice of which flow equation 
to be used to model the flow in porous media, is a problem which need to be 
resolved. In general it depends upon the physical model under study and the 
assumptions made. 

6. ENERGY TRANSPORT 

The knowledge of the heat transfer characteristics in porous media is of great 
importance in many applications. For example, in chemical reactor design it is 
important to know the thermal transport characteristics of the porous media in 
order to make accurate predictions of the variation in reaction rate caused by 
the inlet temperature disturbances. Temperature histories are also important for 
the design of packed bed thermal storage system. Therefore, it is desirable to 
have the proper values of the heat transfer coefficient and effective thermal 
conductivity, so that the time required to heat up the solid particles can be 
estimated [17]. Two different macroscopic descriptions: heterogeneous and 
homogeneous are available in the current literature. 

6.1. HETEROGENEOUS (MIXTURE) FORMULATION 
OF HEAT FLOW IN POROUS MEDIA 

In this model the internal state of the porous media is characterized by two 
co-existing temperature fields associated with the solid and fluid phases, res-
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pectively. Because of the presence of two different temperatures, the heat 
transfer in the porous media is accompanied by a heat exchange between the 
two phases. For the heterogeneous description, the energy equation falls basi-
cally into three categories as classified by Wakao et al. [44]. Therefore, if an 
intrinsic phase volume averaged temperature for the /-phase (fluid) and the 
s -phase (solid) are denoted by (Tf^f and (T^, respectively, then the resul-
ting macroscopic models for the energy equation are [44]: 

(1) SCHUMANN MODEL 

In this model the heat conduction in both phases is neglected and the energy 
equation can be written as: 
— for the fluid phase 

ε κ ) / ^ + ε M / N ' - w = w w - m ( 1 5 л ) 

— for the solid phase 

(2) CONTINUOUS SOLID PHASE (C-S) MODEL 

In this model heat conduction in each phase is included and, if the effective 
thermal conductivities of the fluid and solid phases are denoted by k{ and ks

e, 
respectively, then the energy equation may be written as: 
— for the fluid phase 

ε Ы ^ г + ε К ) / " / · ' v( 7» / = ν·(^· v ( 7 » / ) +
 ( 1 6.1) 

+ h s f a A ( 4 - ( T f Y ) 

— for the solid phase 

( i - ε ) ( ρ s i ^ f - ^ · w ) + h s f asf ((ч - m ^.2) 

It should be noted that the effective thermal conductivity of the fluid phase 
kf

e in eq. (16.1) also includes a thermal dispersion effect, which is discussed 



(3) DISPERSION-CONCENTRIC (D-C) MODEL 

This model also uses an equation for the average fluid temperature, but it cou-
ples this equation to the energy equation for the heat conduction in a single 
particle. The particle is usually treated as being spherical with uniform flux 
boundary condition along the surface [44]. The energy equation for this model 
can be written as: 
— for the fluid phase 

0 l T l + <„/· щ у - «β ν» (Tfy + - ^ L {(Τ,γ - (Tf)f) 
dt 

— for the solid phase 

dt 
= a. 

( P S ) , 

< a2 (τ,γ + 2 a (Τ,γ 

dr2 r dr 

(17.1) 

(17.2) 

with a constraint that 

at r = R, К 
dr 

h A T s Y - ( T f Y ) (17.3) 

The fluid axial thermal diffusivity ααχ (i.e. along the bulk flow direction) 
includes α thermal dispersion term dependent on the bulk velocity of the flow. 

For a porous media composed of identical spherical particles, the axial 
thermal diffusivity α for the original D - С model was given as 

α α χ = ( 0 . 6 - 0 . 8 ) α / + 0 . 5 dp(v) 

whereas for the modified D - C model was given as [44] 

К 
аох = — + 0 · 5 4 » 

(Ρ p)f 

(18) 

(19) 

where km = ε kf + (1 - e)ks is the upper bound to the axial stagnant thermal 
conductivity of the porous medium and is the fluid phase thermal diffusivity. 

The specific surface area a s f and the fluid to solid heat transfer coefficient 
h s j for a porous media composed of identical spherical particles are given by 
eqs. (20) and (21), respectively [1] 

asf = 6(1 - z)\dp 

hsf = kf[2 + l . l ^ ( P f ( v ) d p ^ f f 6 ] / d p 

(20) 

(21) 

where Pr = μjCpflkf is the Prandtl number and kf is the fluid thermal con-
ductivity. 
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Of the three models, the Schumann model is the simplest one to analyze 
since the heat conduction is neglected in both the fluid and solid phases. Mo-
reover, the continuous solid phase (C-S) model is much easier to analyze 
than the dispersion-concentric (D-C) model since both the fluid and solid 
phase temperature are function of the bed position and time. The dispersion 
concentric (D-C) model is the most complicated as additional variables asso-
ciated within the individual particles are included in it. 

A slightly different forms of macroscopic energy models are also available 
in the literature, the difference is being due to the constitutive equations which 
are used for the closure scheme. These macroscopic models require the intro-
duction of length-scale and time-scale constraints which are based on pore-
-scale and local-scale characteristics length, and on the physical parameters 
describing the porous media. If these constraints are not satisfied, then me-
mory effects have to be included in the analysis as suggested in [2]. 

6.2. HOMOGENEOUS (SINGLE EQUATION) FORMULATION 
OF HEAT FLOW IN POROUS MEDIA 

By tracing the effect of a pulse disturbance (Δ) on the temperature of both 
the fluid and solid phases (Fig. 3), a considerable difference in temperatures 
of both the fluid and the solid phases can be observed at the initial stage after 

Fig. 3. Response of fluid and solid phases to a pulse disturbance in temperatures at time t = 0 [25] 

applying the disturbance. As the time increases, the difference in the tempera-
tures dies away and both phases converge to the same temperature. Therefore, 
if the response time for the local heat transfer between the fluid and the solid 
is several orders of magnitude smaller than the characteristic time for variation 
of the mean temperature of the phases, then the fluid and solid phases tempe-
ratures can be assumed to be the same at each point, i.e. the local thermal 
equilibrium (abbreviated as LTE) holds [25]. This makes a heat transfer mo-
del between the fluid and solid phases unnecessary and provides an unambi-
guous definition of the temperature at any point. Therefore, under the assum-
ption of the LTE only a single energy equation is required to describe the 



porous media. Mathematically the single energy equation model can be written 
as [34] 

ε +(1 - ε) K L 
ipcp)f 

д(Т) 

dt 
(υ) ·V(T) = ν·[α·ν<Γ>] (22) 

Wong and Dybbs [46] have experimentally investigated the LTE for diffe-
rent boundary conditions. Their results show that LTE holds for flow rate 
where the Reynolds number Red , based on the pore diameter, is smaller than 
10. However, Amiri and Vafai [l] pointed out that the Darcy number (Da), 
which is defined as the ratio of the permeability to the characteristic length 
squared (i.e., Da = K/W2, where W is the width and/or height and/or diameter 
of the porous bed), is the most influential parameter in determining the validi-
ty of the LTE. Therefore, it is assumed that the LTE becomes less pronoun-
ced as both the particle Reynolds number and Darcy number increase. Whita-
ker [45] reported that certain additional constraints must be fulfilled for the 
homogenous model to be used with confidence. These constraints should be 
however treated as estimates and may only be useful to provide a guideline 
for detailed studies of both models before any final choice can be made. 

6.3. THERMAL DISPERSION 

In the single energy equation model or in the double equation model (i.e. 
C - S and D - C models) the effective thermal diffusivity tensor ( a ) , the fluid 
thermal conductivity ke and the axial thermal diffusivity a a x include a ther-
mal transport term due to dispersion. Dispersion here is understood in the 
Taylor's sense and it is proven from two mechanisms with distinct phenome-
nology [4]. The first is due to heat conduction, which is present in almost 
every transport process, and it depends on the local temperature gradient in 
the medium. Fluid flow causes local deformations of the temperature field, 
thus increasing the temperature gradient and enhancing heat conduction 
(Fig. 4). Mechanical dispersion is the second known source of dispersion. It 

wall 

Fig. 4. Effect of molecular thermal dispersion to the over-all heat transfer: a) stagnant fluid, b) mo-
ving fluid 
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results from the mixing of the local fluid streams as the fluid follows via 
tortuous paths around the solid particles. In general the heat flux in porous 
media can be expressed by three terms. The first term accounts for the pure 
conduction, the second term is connected with dispersion and the third one 
corresponds to convection. This can be written as 

(q) = -ke-V(T)-D((0))-4(T) + (pcp)f(v)(T) ( 2 3 ) 

where q is the heat flux vector [kW-пГ2], kg is the local thermal conducti-
vity tensor and (D((v))) denotes the dispersion tensor which accounts for 
mechanical dispersion and heat conduction enhanced by fluid flow. 

It should be noted that the mechanical dispersion (Fig. 5) is similar to the 
thermal eddy diffusivity in turbulence and is a direct result of the transport 
occurring at the length scale smaller than the selected 
local elementary volume used in the averaging [34]. 

As with the eddy diffusivity in plain media, the 
dispersion in porous media is also anisotropic be-
cause of its dependence on the flow direction (the 
flow anisotropy) and on the presence of anisotropy 
in the solid phase direction (structural anisotropy) 
[34]. Therefore, In order for the thermal dispersion to 
be considered, the energy equation should include 
a total diffusivity tensor ( a ) , the latter is assumed to 
be a superposition of a local effective thermal con-
ductivity tensor ke, which represents the local vol-
ume averaged molecular conduction through both 
phases (stagnant term), and a tensor Dd which represents the local volume-
-averaged dispersion (dispersive term). Mathematically it can be written 
as [34] 

α = - J ^ + z D d (24) 
K ) / 

Since dispersion results from the simultaneous presence of a temperature and 
a velocity gradient within a pore and because of the anisotropy and nonunifor-
mity of the solid matrix structure both ke and Dd are in general anisotropic 
and nonuniform [34]. The thermal dispersion contributes to the increase in the 
rate of heat transfer. Moreover, the dispersion concept helps to explain the 
difference often observed between transport parameters measured along and 
across the principle direction of fluid flow in simple geometries [37]. 

Direction of flow 

Fig. 5. Dispersion due to 
mechanical spreading 



7. POROSITY VARIATION 

In many applications, e.g. fixed bed catalytic reactors, packed beds heat ex-
changers, the constant porosity assumption does not hold because of the pre-
sence of an impermeable wall (Fig. 6). The nonhomogeneity due to the nonu-
niformity of porosity can be found particularly in packed bed of spheres. This is 
because, for perfect spheres, only point contact with the solid boundary can 
exist. The porosity should thus approach a limiting value of unity at the boun-
dary. Therefore, there is a need to focus on the variable porosity effects on heat 
transfer in the vicinity of an impermeable boundary. This region close to the 
impermeable boundary is of practical importance since for most applications the 
heat flux at the boundary is of practical interest. The experimental results dem-
onstrate that the porosity increases from an average value of (in the core 
region) to nearly unity at the wall. The variation in the porosity (Fig. 7) usually 
takes the form of a damped oscillatory function with the oscillation damped out 
at four to five sphere diameters {dp) away from the wall [9, 43]. 

i У ! ! 'r--Core region-—] ! —Wall region 
. ! ! ! -r+i""—Bundary 
I j I I I ! ! friction layer 

I 
—f-j !-—Non-uniform 

I ] j permeability layer 

r 
0 t 

Fluid flow Fig. 6. Regions of variable porosity [9] 

1,0 

В 0,5-» Ρ 

Fig. 7. Variation of porosity in a bed of sphe-
res [43] 

1 2 3 4 5 
Distance form the wall/particale dimeter 

(x/dj 



Problems of modeling flow and heat transfer in porous media 73 

The nonhomogeneous effect of porosity with the no-slip boundary condi-
tion causes the velocity profile to peak near the solid surface resulting in the 
channeling phenomenon [39]. Channeling is therefore referred to the occur-
rence of maximum velocity in a region close to an external boundary. The 
inclusion of the variable porosity profile and the no-slip boundary condition 
dramatically alters the Darcean velocity profile. Another parameter of signifi-
cant importance which also causes porosity variation and therefore contributes 
in the channeling effect is the dimensionless particle diameter (γ = dp/W: 
which is the ratio of the spherical particle diameter to the system characteristic 
length) [9]. The effect of the dimensionless particle diameter for a fully deve-
loped forced convection flow through an annular packed-sphere bed is shown 
in Fig. 8. It can be observed that its effect is similar to the porosity effect 
since both contribute to the wall effect. 

Fig. 8. Influence of dimensionless particle diameter ( γ ) on the channeling effect [9] 

Different variable porosity models are available in the literature which 
approximate the porosity variations near the porous medium boundary: 

(1) EXPONENTIAL-DAMPED MODEL 

ε = ε„[1 +Clexp(-c2Z/rfp)] (25) 

where Cj, c2 are constants, which depend on the packing of the spherical 
particles near the solid boundary. The symbol Ζ denotes the normal distance 
from the wall for either a rectangular or a cylindrical packed beds [9, 39]. For 
an annulus packed bed it is assumed as Ζ = (r. - r\ for Z/2 < r < r. and 



Z = (г - rt) for ri <, r śZ/2 where ri and r0 are the inner and outer radius of 
the annular packed bed, respectively [9]. 

(2) EXPONENTIAL-DAMPED MODEL FOR CYLINDRICAL BEDS 

ε = ε « , + ( ε ο _ ε ο ο ) ( 2 6 ) 

where εο is the porosity at the wall, N is a constant and, r and ro are the 
radial distances normal to the wall and the radius of the cylindrical packed 
bed, respectively [19]. 

(3) OSCILLATORY-DAMPED MODEL 

ε = ε „ [ 1 + αϊ e x p ( - a 2 x / d p ) cosl2nx/dp)] ( 2 7 ) 

where ax and a2 are the constants and χ is the normal distance from the wall 
[11]. 

(4) MEAN POROSITY MODEL 

ε„ = εΜ [1+0.5 (dp/Wf] (28) 

In all of the above models ε^ is the porosity far away from the wall (or in the 
core region) [13]. 

8. INTERFACIAL BOUNDARY CONDITIONS 

The momentum and the energy equations for the porous media must be sup-
plemented with boundary conditions in order to formulate a full mathematical 
model for flow and heat transfer in porous media. Solution of this mathemati-
cal model thus depends strongly on the type of the interface separating the 
porous media from its surroundings. 

In general, the interface can be porous/impermeable boundary, porous/per-
meable (free fluid) interface, and porous/porous media interface, which are 
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shown in Fig. 9. In the following section the problems arising from the inter-
facial boundary conditions for either the momentum or the energy equation 
will be discussed. 

Fig. 9. The general class of the interfacial problems: a) porous/impermeable boundary, b) porous/-
fluid and c) porous/porous interfaces 

8.1. INTERFACIAL BOUNDARY CONDITIONS 
FOR THE MOMENTUM EQUATION 

In general, the interfacial flow for porous media does not pose any difficulty 
when the Brinkman and/or the DBF flow models are used, since they are of 
the same order of magnitude as the Navier-Stokes equation. However, they 
provide a challenge when either Darcy or Forchheimer flow models are 
applied. This is because of the fact that these models are one order of magni-
tude smaller than the Navier-Stokes equation and therefore, the no-slip veloci-
ty on an impermeable boundary cannot be imposed. Moreover, the properties 
continuation across a permeable boundary (porous or free fluid interface) 
cannot be satisfied. 

(1) POROUS/ IMPERMEABLE BOUNDARY 

For this case of the interface, viscous effects are confined in such a thin layer 
that experimental observations are very difficult. For this reason most of the 
existing experimental information have been primarily limited to gross effects, 
such as pressure drop and flow rate correlation. In most flow experiments the 
viscous effects have indeed been found insignificant. Thus assumption of the 
no-slip tangential velocity has little effect on the pressure drop, because the 
major part of the pressure drop is due to the porous media alone. For low 
porosity media the thickness of the viscous layer which is caused by the no-



-slip tangential velocity can be safely neglected and the Darcy flow model is 
well satisfied. However, for high porosity media the boundary effects can be 
quite important. For this situation the Darcy and/or Forchheimer-extended 
Darcy flow models will incorrectly over-predict the flow rate [40, 42]. A com-
parison of the velocity profiles at mid-height of an enclosure obtained from 
the Darcy flow model and from utilizing the Brinkman-extended Darcy flow 
model are shown in (Fig. 10). 

Fig. 10. Comparison of velocity profiles for Darcy and Brinkman flow models [42] 

(2) POROUS/FLUID AND/OR POROUS/POROUS INTERFACES 

Flow or recharge may occur when either a porous medium (with the same or 
different permeability) or a free fluid constitute an interfacial boundary with 
the porous layer of interest and also when a fluid flows over or across a po-
rous medium. Despite the fact that there is a discontinuity of material proper-
ties at the interface region, the properties of the fluid flow normal and tangen-
tial to the interface need to satisfy conditions of continuity across the interfa-
ce. The problems arising from such interfacial boundary conditions for the 
different momentum transport models will be discussed below. 

(A) DARCY AND/OR FORCHHEIMER FLOW MODELS 

35 

Darcy flow model 
Brinkman flow model 

0 l 1 1 1 .^шт— 
0,0 0,1 0,2 0,3 0,4 0,5 

Distance from the wall (x) 

The fact that the Darcian velocity is defined as an average velocity flux rather 
than a velocity at a point as in the classical viscous flow theory, and because 
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of the slip boundary condition, a kinematic boundary condition cannot be 
imposed. Therefore, a dynamic boundary condition can be employed for 
which the velocity distribution can be determined from the pressure distribu-
tion on each side of the interface. Experimental work [5] shows that when 
a viscous fluid flows over a porous media the tangential stress moves the fluid 
close to the interface with a tangential velocity uf i slightly greater than the 
velocity of the fluid in the bulk of the porous media (i.e. the tangential com-
ponent of the Darcian velocity vector (и), which is parallel to the interface). 
Beavers & Joseph [5] have measured this difference by confining the fluid 
above the porous surface to a narrow channel of height (h) (Fig. 11). A sligh-
tly greater flow would occur if these two velocities are equal. Beavers & 
Joseph have assumed that the difference uf i - (и) is related to the surface drag 
^if(dufldy^, on the fluid side by the following relation [5] 

[ d u f l d y ] r ^ J K ^ ) { u f i - { u ) ) (29) 

where β ω is the hydrodynamic slip coefficient, uf i is the tangential fluid 
velocity component along the χ -direction, and the subscript i indicates that 
the slip (interface) velocity is evaluated at the interface. 

Fig. 11. Velocity profile for a flow in a horizontal channel formed by a porous/fluid interface [5] 

The hydrodynamic slip coefficient depends on the bulk direction of flow 
(with respect to the interfacial plane), the channel height, the porosity, the 
value of the Darcian velocity and the porous media structure [32]. 

(B) BRINKMAN AND/OR DBF FLOW MODELS 

Since these flow models are of the same order of magnitude as that of the 
XT : ι ο < · Λ ι ł l i a r a f / M - o К л п п ^ о п / г»r \ t iH í t íгчпс яге* п р р Н р Н t n m a t r h ťhp. 



governing equations at the porous and the fluid interface. For a porous/fluid 
interface these matching conditions for a 2-dimensional flow and with referen-
ce to the coordinate axis of Fig. 11 can be written as [6] 

<»> = «/ (30) 

μβ (д (u)fdy + d(v)ldx) = \if{dufldy + dvf/dx) (31) 

~(Pf) + 2μβ3 (v)/dy = -Pf + 2μ,Βιу/Эу (32) 

where (υ), vf, (P^ and Pf are the Darcian velocity vector, the fluid velocity 
vector and the pressures on the porous medium and fluid side respectively, 
and the symbols (и), (υ) and uf, vf denote the tangential and normal compo-
nents of the Darcian velocity vector and the fluid velocity vector relative to 
the interface on the porous and the fluid sides, respectively. 

It should be noted that for a porous/porous interface the interfacial boun-
dary conditions can be written in a similar manner. 

8.2. INTERFACIAL BOUNDARY CONDITIONS 
FOR THE ENERGY EQUATION 

For a porous/impermeable interface the nonhomogeneity of the porous media 
caused by the porosity variations contribute significantly to the variation in the 
effective thermal conductivity and thermal diffusivity of the porous media 
particularly near the boundary. This variation is difficult to estimate and great-
ly complicates the solution of the energy equation. An alternative simplified 
approach is to assume that the thermal properties are constant (and identical to 
the interior of the medium), and to apply a slip boundary condition at the 
porous/impermeable interface. Sahraoui and Kaviany [33] have developed the 
following slip boundary condition 

dT 
dy 

Ь* (rf - (T\) (33) 

where β(/ι and λ are the dimensionless thermal slip coefficient and a pore-le-
vel length-scale, respectively, and the symbols Ti and (T). denote the tempe-
rature of the solid (rigid) wall and the porous media, at the interface, respecti-
vely. 

The thermal slip coefficient depends on the porous media structure and the 
thermal conductivities of both the solid and fluid phases constituting the po-
rous media, and on the thermal conductivity of the solid wall [33]. 

For a porous/fluid and a porous/porous interfaces the energy equations on 
both sides are matched by assuming that the temperature and heat fluxes are 



Problems of modeling flow and heat transfer in porous media 79 

continuous across the interface [7]. These assumptions can be mathematically 
written as 

where (Τ), km and Tf, kf are the temperature and the thermal conductivity on 
the porous media side and the fluid side, respectively. 

Summing the above discussion on the interfacial boundary conditions it can 
be said that: 

In order for the heat transfer rate not to be overpredicted, higher order flow 
models (Brinkman and DBF flow models) have to be used to eliminate the 
slip boundary condition inherited in the Darcy and/or Forchheimer flow mo-
dels, particularly at higher flow velocities, in the case of a porous/imper-
meable boundary. 

For the porous/porous and/or porous/fluid interface, the slip boundary 
conditions inherited by using the Darcy and Forchheimer flow models do not 
permit any kinematic boundary condition to be imposed and only the pressure 
boundary conditions can be employed to match the governing equations at 
both sides. To account for the no-slip effect, one alternative is to use the B - J 
boundary condition. The B - J boundary condition have received certain 
amount of theoretical foundation and several subsequent experimental investi-
gations have provided further support [32]. However, the B - J boundary con-
dition have been verified for a parallel flow over a porous media, it can also 
be used for other porous media interfacial configurations [6]. Using the B - J 
boundary condition, the deficiency inherited by using the Darcy or Forchhei-
mer flow models for these type of interfacial boundary conditions can be 
resolved. Its main limitation is that it is suitable for one dimensional parallel 
flow (i.e. Poiseuille or Couette flows). This is because experiments with obli-
que (2-dimensional) flows are very difficult to handle and yet have not been 
studied as those of the parallel flows [32]. To account for the 2-dimensional 
effect the vertical component of the velocity vector with respect to the inter-
face at both sides may be assumed equal which is consistent with eq. (29) [6]. 
Moreover, a vertical velocity gradient term (öiy/Эх) needs to be added to the 
left-hand side of eq. (28) and a boundary condition which accounts for mat-
ching the normal stress at both sides with analogous to eq. (31) needs also to 
be employed [6]. However, the effect of this extension is small and therefore 
can be neglected [32]. 

In the case of the higher order flow models the usual practice is that the 
velocity components at both sides are assumed equal. This is physically justi-
fied if a mass balance across the interface is performed and the conservation 
of shear and normal stresses justifies, the eq. (31) and eq. (32), respectively, 
since both sides are mechanically in equilibrium with each other. 

<Γ> = Tf 

kmd(T)/dx = kfdTf/dx 

(34) 

(35) 



The temperature slip boundary condition enables constant effective proper-
ties to be used for the porous media which ease the modeling of the porous 
system and thereby its solution. Therefore, the increase of the heat flux near 
the impermeable wall can be accounted for. For a porous/porous and/or po-
rous/fluid interface the constant temperature assumption across the interface is 
physically justified if the resistance to heat flow across the interface is neg-
lected. The constant heat flux is also physically justified if a heat balance 
around the interface is performed. 

IMPORTANT ASPECTS OF ENGINEERING 
APPLICATIONS OF POROUS MEDIA 

Porous medium is characterized by a very large surface area to a volume ratio. 
This peculiar feature of the porous media can be utilized to either distribute 
heat energy uniformly or to enhance the heat transfer in heat exchange sys-
tems. This characteristic feature of the porous media and the engineering 
importance of the macroscopic approach of the porous media will be discus-
sed in detail in the following section. 

9.1. ENHANCEMENT OF HEAT TRANSFER 

When a porous material is inserted in a coolant passage or a porous substrate 
is attached to a hot surface (Fig. 12), a uniform temperature at the hot surface 

a) 

b) 

Coolant Porous medium 

Hot gas 

Coolant 

Fluid flow 

Hot surface 

Fig. 12. Enhancement of heat transfer: a) porous channel, b) porous substrate 
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will be established. Furthermore, if the fluid trapped in the porous media is 
allowed to circulate or discharged to the environment, then a significant in-
crease in the heat transfer rate will occur and consequently the surface temper-
ature will be reduced [22]. This arrangement may thus be considered as a su-
per heat exchanger. It is shown in Fig. 13 that for approximately the same 
wall heat flux a larger amount of coolant mass flux is needed in order to 
achieve a considerable decrease in the wall temperature in the case without 
porous material than when the porous material is applied. Whereas a consider-
able decrease in the wall temperature and the coolant mass flux is achieved 
for approximately the same wall heat flux, due to the presence of the porous 
media coolant passage. 

Hot wall without porous materials 

• • Hot wall with porous materials Kw/m2 Kg/(m> • s) 

0 0,2 0,4 0,6 0,8 1,0 

Dimensionless distance from enterance (x/L) 

Fig 13. Effects of porous materials on wall temperature and coolant mass flux in a coolant passa-
ge [22] 

The cooling effectiveness can be further enhanced by the elimination of the 
interface resistance between the wall and the porous material and by the use 
of high conductivity porous material and high conductivity wall material. In 
general a porous media can be designed so that they either retard (acting as an 
insulation) or enhance the heat transfer. 

The other alternative to enhance the heat transfer is transpiration [35], which 
is achieved bv making the metal porous and forcing a coolant through it from 



a reservoir toward the boundary exposed to the high temperature (Fig. 14). The 
transpiring gas greatly increases the thickness of the thermal boundary layer and 
reduces the temperature gradient at the surface. The reduction of the heat flux to 
the surface results in a corresponding enthalpy increase of the transpiring gas in 
the boundary layer. Possible applications embrace cooling of rocket nozzles, arc 
electrodes, reentry bodies and turbine blades [35]. 

a) Discharge into 
boundary layer 
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. fluid supply 
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Hot gas 
stream 
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Transpirating 
gas return 

• Plenum annulus 

Fig. 14. Possible physical models for a transpiration cooling, e.g. (a) cooling of turbine blades 

For phase change heat transfer, a very small wall overheating can start 
nucleate boiling on a porous surfaces. Bubble generation raises the heat flux to 
a higher order of magnitude in a range of small wall superheats, where natural 
convection is normally the sole mode of heat transfer. Thereby, the porous 
medium raises the heat transfer coefficient of order of magnitude higher than 
that of convective heat transfer for the corresponding free-fluid alone. This 
makes the porous media very attractive to high efficiency heat exchangers [29]. 

9.2. ENERGY CONVERSION SYSTEMS 

The use of porous media, particularly packed and fluidized beds, are very 
attractive as conversion and storage systems. This is because of their large 
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surface area which provides a very compact structure and therefore greatly 
enhances the heat storage capacity as compared to the systems that utilize 
energy transporting fluid which alone acts as the storage medium [41]. Energy 
conversion and storage in porous media include the use of: 
1. Sensible heat storage systems. 
2. Phase change material (PCM): The principle advantage of the PCM in 

packed beds is that the storage density of the bed is increased significantly. 
Therefore, the size and mass of storage system required for a particular 
application are reduced proportionally [41]. 

3. Solid-to-solid phase transition (STSPT) materials: Plastic crystals are such 
materials which exhibit mesocrystalline phases and high transitional enthal-
py during solid-to-solid phase transition, between the crystalline and plastic 
crystalline states [28]. These materials reversibly absorb large amount of 
energy during solid state phase transformation at specific temperatures 
below their melting temperature. Therefore, they can be used for energy 
storage without being confined. 

4. Thermochemical energy conversion: This method utilizes a material which 
undergoes a reversible chemical reaction where the thermal energy can be 
stored in the form of reaction enthalpy in endothermal reactions (forward 
reaction) to yield products. The input thermal energy can be recovered with 
the exothermic reaction [12]. This method features a very high energy 
density and storage of thermal energy can be made possible at room tem-
perature and therefore, there is no need for thermal insulation. The method 
appears to be promising, especially for large term storage and transport of 
thermal energy. Among the different methods of thermo-chemical energy 
conversion are: the production of hydrogen from water and the decomposi-
tion of inorganic substances [12, 21]. 
Porous media can be also used for direct conversion of chemical energy to 

low (infra-red) radiation. Porous radiant burners (PRBs) (Fig. 15) can serve as 
an example of such an application, they have many advantages over the con-
ventional burners. 

Ρίσ 15 Schematic, diagram of a Dorous radiant burner [381 



These are [38]: 
a) high thermal efficiencies, due to reduced enthalpy loss through the fuel 

gas, which therefore reduce the energy consumption; 
b) elimination of hot spots in heat transfer devices, because of more uniform 

heating, which thereby increases the life time of the heat transfer equipment; 
c) lower emission of toxic nitrogen oxides, as a result of lower flame tempe-

rature, which therefore improves the quality of environmental air. 

9.3. MODELING OF CLASSICAL PROBLEMS 
BY THE POROUS MEDIA APPROACH 

The macroscopic approach, which is utilized to study problems of transport 
phenomena in porous media, was applied to analyze other complex systems. 
This might ease the difficulty of mathematical modeling and gives a guide for 
better understanding of the system which may result in improvement of the 
system performance and therefore in energy and material saving. This class of 
problem formulation could contribute to the energy transport in systems, such 
as: heat exchanger, air flow around building, pre-cooling of foodstuffs, trans-
port of chemical spices in biological bodies and the modeling of the phase 
change problems (e.g. solidification of alloys). For example, Sinivasan et 
al. [36] have modeled flow and heat transfer through a spirally fluted tubes 
using the porous media approach. The model divided the flow domain into 
two regions. The flutes were modeled as a porous substrate with direction-de-
pendent permeability, excellent agreement was reported for the numerical and 
experimental results. 

10. CONCLUSIONS 

This critical review of modeling momentum and energy transport in porous 
media allows the following conclusions to be drawn: 

Different momentum equations are used to model the fluid flow in porous 
media; each of these models has its own deficiency. The popular Darcy flow 
model is the simplest flow model, but it is restricted to either low porosity or 
to a slug flow. The other flow models which include higher order terms 
accounting for inertia and viscous effects should be used to model the fluid 
flow for high porosity and/or high velocity flow. The criterion for their use 
should however be clearly stated. 
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Modeling the thermal behavior of the porous media depends on whether 
the homogeneous or the heterogeneous formulation is to be used. When the 
heterogeneous formulation is considered, Schumann model provides the simp-
lest thermal energy model since in this model the heat conduction is neglected 
in' both phases. Accounting for the heat conduction in the phases requires the 
more complicated (C-S) and (C-D) models to be used. The other alternative 
is the homogeneous formulation, but it needs the local thermal equilibrium 
assumption to be verified. In both formulations the thermal dispersion effect 
should be included, but still very little is known about this phenomenon. 

Porosity variation has to be considered in order for the channeling effect, 
occurring at the wall, to be accounted for so that the velocity and temperature 
profiles will not be affected. This can be done by choosing an appropriate 
porosity model. Porosity variation also effects the porous media properties, e.g. 
the Brinkman effective viscosity, which needs to be modeled with this damping 
oscillatory in porosity, and also contributes to the variation of the effective 
thermal conductivity which results in a temperature slip at the bounding wall. 

Although the porous media exhibit some characteristics of that of the cor-
responding free-fluid flow, its behavior is totally different, particularly for 
a porous/porous interface and porous/fluid interface. This behavior brings ano-
ther difficulty in modeling interfacial boundary conditions. As the porosity of 
the porous media approaches unity its behavior should resemble that of the 
fluid. However, as the porosity approaches zero, its behavior should approach 
that of the solid. But actually this is not the case, since the porous media are 
proven to enhance the heat transfer and they are also found to retard the heat 
transfer (insulation) in some cases. There are also complex systems which 
resemble the characteristics features of the porous media, e.g. the mushy zone 
during the solidification of alloys, pre-cooling of food products and heat 
exchangers. These systems can be satisfactorily modeled by the macroscopic 
approach of the porous media. 

The wide range of porous media applications, particularly for the enhance-
ment of heat transfer, makes the porous media a kind of a super-material 
which promotes the idea of the super compact heat exchangers. Other modes 
of heat transfer, e.g. phase change and radiative heat transfer, are needed to be 
studied in order for the behavior of the porous media to be fully understood. 
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PROBLEMY MODELOWANIA PRZEPŁYWU PŁYNU I WYMIANY CIEPŁA 
W OŚRODKACH POROWATYCH 

W pracy przedstawiono przegląd problemów teoretycznych i inżynierskich zastosowań ośrod-
ków porowatych. W szczególności rozpatrzono te zjawiska towarzyszące przepływowi płynu 
i wymianie ciepła w ośrodkach porowatych, które nie występują w przepływie samego płynu. 
Zjawiska te związane są z występowaniem członów wyższego rzędu w równaniu pędu oraz ze 
zjawiskiem dyspersji termicznej i lokalnej równowagi termicznej w równaniu energii. Rozpa-
trzono ogólną klasę warunków brzegowych oraz zjawisko kanałowania spowodowane niejedno-
rodnością porowatości w pobliżu brzegu ośrodka. Opisano zasadnicze inżynierskie zastosowania 
ośrodków porowatych wiążące się z wymianą ciepła. 


