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Abstract

Nuclear power plant process systems have developed greatly

over the years. As a large amount of data is generated from Dis-

tributed Control Systems(DCS) with fast computational speed

and large storage facilities, smart systems have taken over anal-

ysis of the process. These systems are built using data mining

concepts to understand the various stable operating regimes

of the processes, identify key performance factors, makes es-

timates and suggest operators to optimize the process. Asso-

ciation rule mining is a frequently used data-mining concept

in e-commerce for suggesting closely related and frequently

bought products to customers. It also has a very wide ap-

plication in industries such as bioinformatics, nuclear sciences,

trading and marketing. This paper deals with application of

these techniques for identification and estimation of key perfor-

mance variables of a lubrication system designed for a 2.7 MW

centrifugal pump used for reactor cooling in a typical 500MWe

nuclear power plant . This paper dwells in detail on predictive

model building using three models based on association rules for

steady state estimation of key performance indicators (KPIs) of

the process. The paper also dwells on evaluation of prediction

models with various metrics and selection of best model.

Keywords: Association Rule Mining; Classification
Based on Association; Classification Based on Mul-
tiple Association Rules; Classification based on Pre-
dictive Association Rules; Data Mining; Data mod-
elling; Data Transformation; Inter Correlation; k-
Means Clustering; Principal Component Analysis

1 Introduction

Nuclear power plants are built at high capital cost and
have a long lead-in period. Due to environmental and
societal considerations, their operation is also highly
regulated both domestically and internationally.

They operate as base load stations at constant load
factors. This calls for optimized design, engineering,
erection, commissioning and operation of the systems
to reduce capital costs and to increase fuel and ther-
modynamic efficiency so as to make power generation
competitive to other fossil and conventional power
generating stations. The systems are designed, en-
gineered and operated to cover all modes of opera-
tion within the technical specifications to ensure high
availability without compromising on quality, nuclear
safety or environment protection. Considering these
requirements, plant managers provide extensive train-
ing to plant operators, which is moreover demanded
by the regulatory authorities for the purposes of grant-
ing operating licenses etc. With training, skill and
experience, plant operators monitor the process con-
ditions, interpret their observations and take appro-
priate actions.

Data science has played a major role in implementing
concepts like Industry 4.0 and Internet of Things, as
highlighted by [1, 2]. Developments in the semicon-
ductor industry have deliveed higher speed, producing
server-like computation power within small chipsets.
Data science has improved the efficiency, productivity
and reliability of plant without much change in the ba-
sic principles of mechanics and process systems. Data
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analytics concepts are now widely accepted in areas
like bioinformatics, astrophysics, e-commerce, mar-
keting, traffic management, healthcare, economics
etc.

The decision making process of the operator can
be made more effective by using computerized tools
and models using data science concepts on the large
amount of data being created and stored in the com-
puters and servers of the Distributed Control Systems
(DCS). These models will enhance the operator’s un-
derstanding of the process and its dynamics; assist
him to predict values so that s/he can take timely
action to improve performance.

Association rule mining is a frequently used data-
mining concept in e-commerce for suggesting closely
related and frequently bought products to customers.
It also has a very wide application spread among in-
dustries such as bioinformatics, nuclear sciences, trad-
ing and marketing. Association rule mining identi-
fies interesting relations between variables in a big
database. The algorithm identifies frequent patterns
in the data. Based on the frequent patterns it identi-
fies strong rules using some measures of interesting-
ness in the form that “if A happens, then B is likely
to happen”.

Application of this data mining tool is demonstrated
in this study of a representative nuclear power plant
process which takes full advantage of readily avail-
able plant data. The study helps to identify key per-
formance indicators (KPI) and estimate their opti-
mum values using three classification models based
on associations: Classification Based on Association
(CBA), Classification Based on Multiple Association
Rules (CMAR) and Classification based on Predictive
Association Rules (CPAR).

The objectives of this study are to deploy these con-
cepts in the process system to gain a better under-
standing of the operating modes and to estimate the
values of key parameters to prompt operation person-
nel to adhere to the optimum region of operation. In
addition, this study will also aid predictive mainte-
nance and hence result in improved reliability.

Of the many critical process systems of a nuclear re-
actor, a lube oil system was chosen for the case study
to demonstrate the implementation of a new compu-
tation concept in nuclear systems that can be adopted
for safety systems after due verification and clearance
by regulators. The lubrication system is a non-nuclear
system, which is important for equipment safety and
at the same time facilitates all the possibilities of pro-
cess system analysis and implementations to an ex-
tended level.

The study involves performance optimization analysis

in steady state operating conditions. It primarily fo-
cuses on identification of various operating regimes,
identification of key performance indicators and es-
timating their values while tweaking the process for
enhancement of efficiency. This paper will dwell in
detail on predictive model building using association
rule mining models for steady state estimation of key
performance indicators (KPIs). The paper also dwells
on evaluation of these prediction models with various
metrics and selection of the model through Resource
Operating Characteristics (ROC).

2 Literature review

The field of process optimization and development of
soft sensing technologies has been a subject of re-
search for many years and there are numerous papers
in this area specifically using the data science ap-
proach. Various publications deal with monitoring the
performance of the process using sensor data analysis.
Various models are proposed using several statistical,
mathematical and data modelling techniques.

[3] dwells on the two fundamental requirements in
a process optimization methodology: performance
monitoring and performance improvement. The pa-
per demonstrates the models based on system iden-
tification in two chemical engineering applications in-
cluding a bio diesel process. The author dwelt on per-
formance monitoring of industrial control loops with a
focus on the stiction phenomenon, the most common
control valve fault. The paper proposes two mod-
els for stiction diagnosis based on the numerical opti-
mization and transformation of the industrial dataset.
The author demonstrated use of proper data filtering
in the presence of noise for correct stiction detection.
For process performance improvement the author pro-
posed two models based on PID controller tuning and
development of soft sensors using data modelling.

Soft sensors generate new information that is not
readily available from on-line instrumentation or lab-
oratory measurements, predict the quality attribute of
interest to minimize measurement delays and enable
quick control actions. The authors also compared the
prediction capability of several modelling techniques
using training and validation datasets.

[4] reiterates that since data-driven soft sensors are
based on the data measured within the process, they
can describe the true conditions of the process bet-
ter than model-driven soft sensors. The most pop-
ular modelling techniques applied to data-driven soft
sensors are: Principal Component Analysis combined
with a regression model, Partial Least Squares, Artifi-
cial Neural Networks, Neuro-Fuzzy Systems and Sup-
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port Vector Machines.

[5] focused on newer standards of power plant moni-
toring and control using Distributed Control Systems
(DCS) and reported on their effectiveness in opera-
tions. However, during upset or transient conditions,
the DCS is flooded with many alarm signals making it
complicated and difficult to access critical parameters
for monitoring plant conditions. Data mining tech-
niques are best suited in a situation where most of the
process data are highly correlated and exhibit multi
collinearity. Data mining is used to develop mod-
els from data during process steady state conditions.
These models establish relationships among variables
under normal conditions and these discovered relation-
ships are used to identify unusual conditions from the
trained behavior. The paper demonstrates the use of
principal component analysis and partial least squares
techniques on the data available in the historian server
of DCS, and proposes a process-monitoring algorithm.

[6] presents the theoretical background of different
modelling approaches in condition monitoring appli-
cations. The paper evaluates commercial condition
monitoring software based on recursive neural net-
works. Several models were developed and evalu-
ated with different training parameters during healthy
and fault detection phases of operation. The study
demonstrated that we could train a reliable model
capable of automatic fault detection using principal
component analysis and correlation analysis.

[7] proposes a method of optimizing process opera-
tion at a 300MW power plant based on data mining
techniques using real-time data acquired by the Plant
Data Acquisition System (DAS). The model thus de-
veloped uses fuzzy association rule mining to find op-
timum values of the process from quantitative data
at the power plant. The optimal values guide opera-
tors online toward improved performance at the power
plant.

[8] describes the research carried out to optimize the
performance of steam generation systems in thermal
power plants by applying data mining techniques. The
aim of the research is to develop models for perfor-
mance monitoring of the plant for the full range of
operating conditions. The model was developed us-
ing association rule mining in the historical data of a
power plant to ascertain the behavior of plant com-
ponents and to determine relationships between them
for the plant as a whole. It was ascertained that these
models are much more accurate than empirical ones
determined from the design of the component. Fur-
ther, they can be used in conjunction with a suitable
expert system that will determine deviations from nor-
mal plant operations and suggest suitable correction
strategies to operators.

[9] highlights the big role played by data mining and
analytics in the process industry over several decades.
The paper evaluates the existing data mining and an-
alytics applications in the process industry from a ma-
chine learning perspective through unsupervised and
supervised learning algorithms.

[10] deals with performance monitoring of redundant
process sensors for process optimization in a nuclear
power plant by developing a combined online early
warning signal for the operator on the requirement
for calibration checks of the redundant sensors. This
paper dealt with the development of a drift monitor
through data mining techniques, using mahalanobis
distance metrics for a representative process in a nu-
clear power plant.

All the above studies are oriented toward optimizing
performance of processes using various data modelling
techniques in power plants in general. In contrast,
this paper deals with the study involved in perfor-
mance optimization analysis in the steady state oper-
ating conditions specific to a nuclear power plant. It
primarily focuses on the identification of various op-
erating regimes and the identification of associated
and correlated variables and their values in each of
the operating regimes. In this paper, the data min-
ing techniques are dealt with in detail for performance
improvement of the process using a large amount of
data collected in the DCS. Dimensionality reduction
and data transformation exercises are carried out us-
ing multi-collineartity analysis and principal compo-
nent analysis, which assisted in more reliable model
building. The operating regimes are identified using
k-means clustering. The time series data is converted
to a transaction data type and the associations are
identified and pruned with thresholds of significance
to identify the key parameters of the process. No soft
sensor is modelled in this study. Nevertheless, opti-
mization techniques are developed to identify key per-
formance indicators of the process using association
rule mining.

This paper continues the study carried out by [11]
where the details of identification and optimized pro-
cess values of key performance indicators for the cho-
sen process of a nuclear power plant are determined
and presented in detail. This paper demonstrates in
detail the process of data model building for prediction
of values of chosen KPI under changes in other vari-
ables using classification models based on association
rules. Different stages of the data modelling like data
preprocessing, exploratory data analysis, cluster anal-
ysis and association rule mining are discussed so that
the study is complete and fully presented in the paper,
leading to meaningful comparisons that can be made
with respect to process optimization by subsequent
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research. The paper also presents various evaluation
metrics for model evaluation and selection.

3 The process system

The process system taken for the case study is the
oil lubrication and cooling system of a 2.7 MW cen-
trifugal pump commissioned for circulating reactor
coolant, as shown in Fig. 1. The pump is used to
circulate molten sodium in a loop for extracting heat
from a reactor core and feeding the heat to steam
generators.

The pump is housed in a fixed shell called a pump
tank, having a free liquid level. The space above the
liquid is filled with inert cover gas. The pump shaft
is guided by a hydrostatic bearing at the bottom and
a thrust bearing at the top. Three mechanical seals
are provided to prevent leakage of cover gas into the
atmosphere. Oil circulates through the bearings and
mechanical seals, to provide cooling, lubrication and
sealing for the pump shaft assembly. The leakage oil
from the bearings and mechanical seals is collected
in three catch pots in tandem. The oil collected in
the catch pots is drained through individual separate
circuits to the leakage collection tank.

Two independent oil circuits are provided to circulate
the oil; one for the bottom mechanical seal, the other
for the top bearing and mechanical seal assemblies.

Each circuit has two reciprocating pumps for circulat-
ing the oil, two filters for cleaning and two blowers
for cooling the oil. The pumps, filters and blowers are
operated in a redundant configuration so one of the
two will always be operating and the other one will be
on standby.

The blower cools the oil after it extracts the heat from
the seals. The blower is controlled by an electronic
controller for the purpose of maintaining the temper-
ature of the mechanical seals of the main centrifugal
pump at around 55oC. Alarms and trip are provided
in case the oil temperature exceeds the set points.
The main centrifugal pump is designed to trip on high
seal oil temperature and low oil flow/low oil pressure,
which may subsequently lead to reactor trip.

Of the two circuits, the bottom mechanical seal oil
circuit is considered for this analysis.
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Figure 1: Oil Cooling Circuit for Bottom Mechanical Seal

4 Data preprocessing

The instrumentation of the system consists of both
analog and digital sensors to monitor various param-
eters of the bottom circuit oil cooling system.

Figure 2: Correlation among variables

The DCS scans the sensors, collect the data and stores
in the server for presentation to the operator in mimic

form. The data is generated every five seconds and
stored in the redundant process computer.

Raw data available in the process computer is con-
verted to a spreadsheet file and then imported to a
data analysis tool ‘R’. Around 400,000 observations
were extracted from the server for the period of one
month and analyzed. There were some anomalies in
the data like missing values, out of range values due to
sensor unavailability, sensor unable to connect to the
distributed control system, issues in database server
& historians, and mismatch in connections etc., which
were excluded from data processing. In addition to
this, there are some digital signals which represent the
healthiness of the system showing high all the time,
and this will not give us any information for analy-
sis purposes. These signals were also excluded. As a
result, we were left with approximately 400,000 sam-
ples having nine feature sets that correspond to the
analog measurements of temperatures, pressure, level
and flow at various locations of the process system for
this particular analysis, as listed in Table 1.
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Table 1: Feature sets for Analysis

Param-
eter
ID

Parameter Description Range of
Measure-

ment

TTRol20 -
801

Oil inlet temperature 0-600◦C

TTRol20 -
804A

Oil outlet temperature 0-600◦C

TTRol20 -
804B

Oil outlet temperature 0-600◦C

TTRol20 -
804C

Oil outlet temperature 0-600◦C

TTRol20 -
808

Return oil temperature
after cooling by

blowers

0-600◦C

PTRol20 -
801

Oil Filter Differential
Pressure

0-7
kg/cm2

PTRol20 -
803

Oil inlet pressure 0-7
kg/cm2

LTRol20 -
801

Bottom Circuit Oil
tank Level

0-500 mm

FTRol20 -
801

Oil outlet flow 0-50
m3/hr.

5 Exploratory data analysis

A key tool in data mining is data exploration. Visual
inspection of the data itself can provide some obser-
vations. Further, detailed quantitative measures are
analyzed by deploying various exploratory tools. Such
tools will produce important analytical inferences with
minimum knowledge about the complex process sys-
tem, so that one can make meaningful and realistic
inferences just by exploring the data.

As can be seen from Fig. 2, the inter correlation study
of the variables indicate that the temperature, pres-
sure and flow of oil on both inlet and outlet of the seals
are interdependent and hence exhibit multicollinearity.
Further, the range of measurements for each type of
process measurements are different, motivating the
use of principal component analysis to eliminate the
effect of multicollinearity by dimensionality reduction
and orthogonal transformation.

To find out the right number of principal components,
we calculate the eigenvalues for each of the principal
components. It is observed from Tables 2 and 3 that
93.84% of the variances can be represented by just
three principal components.

With this, the amount of data was reduced to 33%
without affecting the individual variances, removing
the multicollinearity completely. To optimize the com-
ponents, we use orthogonal rotation methods.

Each component represents a set of variables accord-

Table 2: Major Principal Components with Eigen Val-
ues

Principal
Compo-
nents

1 2 3 4 5 6

Eigen
Values

6.517 1.156 0.773 0.439 0.087 0.017

Table 3: Principal Components and Variances Ex-
plained

PC1 PC2 PC3 PC4 PC5 PC6

ss loading 6.52 1.16 0.77 0.44 0.09 0.02
Proportion
variance

0.72 0.13 0.09 0.05 0.01 0

Cumulative
variance

0.72 0.85 0.94 0.99 1 1

ing to their weight on the component. PC1 explains
variances of all temperature measurements. PC2 ex-
plains the variances of pressure and flow in the process
and PC3 explains the variances of all pressure sensors.
We use these three components for clustering and plot
in a 3D space for understanding the distribution of
data as shown in Fig. 3.
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Figure 3: Plot of Principal Components

6 Clustering

Clustering is an important technique employed in data
mining to identify data points that are similar in na-
ture. For a process system, similar data points mean
the operating region of the instances is similar in na-
ture. This will help to distinguish the modes of oper-
ation as well. We normalize the data before deploying
the clustering algorithm to make sure that all vari-
ables are treated on the same scale. The distances
between each data point are calculated and based on
the distance the data points are grouped, so that the
inter-cluster distance is maximum and the intracluster
distance is minimum.

We use K means clustering in this study as the compu-
tational power required and complexity is minimum.
The normalized data points are distributed into an
‘N’ dimensional space and random centroids are gen-

erated in it. During the first iteration, the distance
from each point to each centroid was calculated. Min-
imum distance to centroid will acquire the data point
for the corresponding cluster. Then the centroid will
be recalculated by taking the average of all its data
points. After several iterations with the centroids re-
maining unchanged, we obtain the final cluster distri-
bution of the data. Generally, the number of clusters
will be decided by eigenvalues. From the 3D plot
of the principal components in Fig. 3 it was evident
that the number of clusters shall be three. K- means
clustering was done by assigning three random cen-
troids and after 50 iterations, the best fit was taken
by considering the minimum intra-cluster and maxi-
mum inter-cluster distances. After clustering, it was
found that there were 2 major clusters and 1 minor
cluster with 197900,205855 and 10975 data points
respectively. Three operating regions of the process
system were identified, as in Table 4.
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Table 4: Clusters for Principal Components

Parameter Cluster-
1

Cluster-
2

Cluster-
3

PC1 0.0853 -
3.942

0.128

Cluster Centres PC2 -
0.037

-
4.485

0.274

PC3 1.032 -
0.807

-
0.949

Cluster Size by
number of data
sets

197900 10975 205855

Custer size in % 47.718 2.646 49.636

7 Association rule mining

Association rule mining is a data science algorithm
used to identify interesting relations between variables
in a big database. The algorithm identifies frequent
patterns in data. Based on the frequent patterns, it
identifies strong rules using some measures of inter-
estingness in the form that “if A happens, then B is
likely to happen”.

This is a very frequently used data mining concept
in e-commerce for suggesting closely related and fre-
quently bought products to customers. Nevertheless,
it has a very wide application spread among industries
such as bioinformatics, nuclear sciences, trading and
marketing. As presented by [12],

Let I = {i1,i2,i3,. . . . . . . . . . . . .in} be a set of n bi-
nary attributes called items. Let D =
{t1,t2,t3,. . . . . . . . . tm} be a set of m transactions
called database.

Each transaction in D has a unique transaction ID
and contains a subset of the items in I . The asso-
ciation rule is built as

A→ B where A 6= 0, B 6= 0, A ∩B = φ

A called antecedent or left-hand-side (LHS) and B
consequent or right-hand-side (RHS). Interesting rules
from the set of all possible rules are selected based on
minimum thresholds on support, confidence and Lift.
Rules are considered strong and eligible if their sup-
port and confidence values are higher than the thresh-
olds,

The support value s for the rule is given by the per-
centage of transactions in D that contain A ∪B(i.e.,
the union of sets A and B say, or, both A and B).
This is taken to be the probability P (A ∪B).

The confidence c for the rule A → B is given by the
percentage of transactions in D containing A that

also contain B. This is taken to be the conditional
probability, P

(
B
A

)
.

Lift is the measure of correlation between item sets A
and B. The occurrence of item set A is independent
of the occurrence of item set B only if P (A ∪B) =
P (A)P (B); otherwise item sets A and B are depen-
dent and correlated as events. The lift between the
occurrence of A and B can be measured by computing
the ratio between P (A ∪B) and P (A)P (B).

If the lift value is less than one, then the occurrence
of A is likely to lead to the absence of B. If the
value is greater than one, then A and B are positively
correlated. If the value is equal to one, then A and B
are independent and there is no correlation between
them.

To apply frequent pattern mining in the process under
study, the process system time series data is converted
into a transactional item like structure by converting
the continuous data to categorical factors and slicing
it to 25 bins and naming it as cards. The database
is now converted to a transactional type with various
item sets to facilitate association rule mining.

Each cluster is considered as a store, each variable is
considered as different sections and each bin is con-
sidered as a card/item from the section. Association
rule mining was done for each cluster separately by
considering each row as a transaction data with item
sets from each variable/section.

Association rule mining is done and rules with maxi-
mum lift were considered for each cluster individually.
In addition, the rules were plotted in Fig. 4,5,6 af-
ter pruning the confidence and support to a minimum
value of 0.4 as there will be so many rules that are
insignificant.

Figure 4: Rules Distribution for Cluster-1
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Figure 5: Rules Distribution for Cluster-2

Figure 6: Rules Distribution for Cluster-3

8 Key performance indicators

Association mining has resulted in a set of rules based
on frequent patterns. From the very strong rules with
high support, confidence, lift, and variables, which
are part of these rules, the key performance indicators
were identified as follows:

PTRol20 803 Oil inlet pressure to bottom mechani-
cal seal

TTRol20 801 Oil inlet temperature to bottom me-
chanical seal

FTRol20 801 Oil outlet flow from mechanical seal

TTRol20 808 Return oil temperature after cooling
by blowers

These variables play a major role in the performance
of the system. Any change in value of one of the vari-
able affects the others. Hence, these variables can be
considered key parameters for the process. By con-
trolling these parameters, the process can be tuned to
provide optimized performance.

9 Model Building

The objectives of this work are to know the operating
regions and to understand the behavioral characteris-
tics among the variables. There are various machine-
learning models available for building predictive mod-
els for such systems.

In the present study, since the continuous time series
data are transformed to a transactional type with cat-
egorical attributes and association rules are identified
to understand the key parameters, these rules are ex-
tended further to develop a model for prediction. As
presented by [12], the association rule classification
method follows the procedure below:

1. Identify frequent item sets by association rule
mining.

2. Generate association rules based on the frequent
item sets that satisfies the threshold criteria for
support and confidence.

3. Develop a rules-based classifier by organizing the
association rules.

Performance of the associative classification models is
based on the method of mining the frequent item sets
and the method of analysis of the mined rules that are
used for classification. The various models applied in
the study are as follows:

9.1 Classification Based On Associa-
tion

Classification Based on Association (CBA) follows an
iterative approach by making multiple passes on the
data, to identify frequent item sets similar to the Apri-
ori algorithm. The length of the rules mined deter-
mines the passes. It is equal to the length of the
longest rule mined. The rules satisfying minimum
confidence and support thresholds are then ordered
on decreasing precedence on the values of confidence
and support. If more than one rule have the same
antecedent, then we select the rule with the highest
confidence to represent the set. A new data tuple is
classified based on the first rule satisfying the tuple.
In case a new tuple does not satisfy any of the rules,
the classifier assigns a default class for the tuple based
on a default rule with the lowest precedence. Thus,
we form a decision list with the set of rules.

9.2 Classification Based on Multiple
Association rules

As elaborated by [13], Classification based on Mul-
tiple Association Rules (CMAR) carries out frequent
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item sets mining using the FP-Growth algorithm us-
ing a tree structure called FP-tree. Hence, only two
passes are required on the data to identify the frequent
item sets and generate rules that satisfy the thresh-
old conditions of support and confidence. CMAR also
develops a tree to prune the rules, store and retrieve
rules efficiently. The rules are pruned based on con-
fidence, correlation and coverage. We prune special
rules with low confidence if general rules with high
confidence are available. Further, we also prune the
rules for which the antecedent and the class are not
positively correlated.

The identified rules are grouped based on the class
labels. All rules within a group share the same class
label and each group has a distinct class label.

For a new data tuple, unlike CBA, which classifies
based on the most confident rule that satisfy the tu-
ple; CMAR calculates a weighted χ2 value for each
group. It then assigns the class label of the group
that satisfies the tuple with the highest χ2 value.

CMAR is more accurate than CBA. It is also more
efficient in terms of runtime, scalability and memory
usage.

9.3 Classification Based on Predic-
tive Association rules

Classification based on Predictive Association Rules
(CPAR) as deliberated by [14] differs from CBA and
CMAR on the rule generation algorithm. It generates
rules to distinguish preferred class tuples from all oth-
ers. For every rule generation, we remove the data
tuples of the preferred class that satisfies the rule.
This iteration is continued until all the tuples of the
preferred class in the data set are covered and all the
classes are covered. Hence, fewer rules are generated
compared to CBA and CMAR. Classifier rule sets are
formed with the generated rules based on the class la-
bels. The rules are ordered according to their Laplace
accuracy.

For a new data tuple, CPAR will use the best k rules of
each group to predict the class label for the expected
accuracy. Thus we eliminate the influence of lower
rank rules in decision-making. CPAR is comparable
to CMAR in terms of accuracy. However, CPAR is
faster and efficient for a large data set, since the rule
sets are smaller than CMAR.

9.4 Model Deployment

The models were built using R code version 3.6.3 for
the total data collected for this study. However, de-
veloping, training and testing the model to estimate

Table 5: Model Output parameters

ModelParameters TTRol20 -
808

TTRol20 -
801

FTRol20 -
801

PTRol20 -
803

Absolute
minimum

support
count

14409 14409 14409 14409

CBA Rules
before

pruning

17 16 17 17

Rules after
Pruning

5 2 9 6

CMAR No.of
classes

14 13 13 14

No.of rules 190 249 240 261

CPAR No.of
classes

14 13 13 14

No.of rules 131 125 81 91

the accuracy using the same data set will result in mis-
leading values. The developed model is trained with
the given data and if the same data is again used for
testing, the estimates obtained will be optimistic due
to over specialization of the model to the data.

Holdout method [12] is adopted for building and test-
ing the model by randomly dividing the data set into
a training set and a test set. The model is built using
the training set and the model’s accuracy is tested
with the test set. This estimate will pessimistic, since
the model is built only with a portion of the data.

Hence, a complete dataset of 205855 data tuples that
were converted to a transactional database for associ-
ation rule mining was split into training data set and
testing data in the ratio of 70:30. Then the model was
built on the training set for each of the parameters: oil
outlet flow from mechanical seal (FTRol20 801), oil
outlet temperature from the coolers (TTRol20 808),
oil inlet pressure to the mechanical seal (PTRol20 -
803) and oil inlet temperature to the mechanical seal
(TTRol20 801).

The CMAR and CPAR models were built using
LUCS KDD implementation tool as [15]

The CBA model was implemented with the R package
‘arulesCBA’ as per [16].

Both CBA and CMAR models are built with the
thresholds of 0.1 for support and 0.5 for confidence.
CPAR model is set to use the best of five rules for
classification. The parameters of the model output
are as per Table 5.

The predictions were made on the test data set to
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evaluate model performance for each variable.

10 Model Evaluation

Evaluation of a model is an important step in ascer-
taining its suitability for the given problem and effi-
ciency on performance. Various metrics are derived
for evaluating model performance for both balanced
and imbalanced classes of data sets.

In a multiclass environment, evaluation is carried out
for each of the classes. Positive tuples (P) indicate
the tuples with main class of interest and all other
tuples are Negative tuples (N).

Considering that the model is evaluated on a labelled
test data set, P indicates the quantity of positive tu-
ples and N indicates the quantity of negative tuples.
For each tuple, the prediction of class label by the
model is compared with the actual class label of that
tuple. Further to this, four more measures are to be
calculated for computing the evaluation metrics.

True positives (TP) : The term refers to the quantity
of positive tuples that were correctly classified by the
model.

True negatives (TN) : The term refers to the quan-
tity of negative tuples that were correctly classified by
the model.

False positives (FP) : The term refers to the quan-
tity of negative tuples that were incorrectly classified
as positive.

False negatives (FN) : The term refers to the quan-
tity of positive tuples that were incorrectly classified
as negative.

While true metrics such as TP and TN indicate how
the model is predicting correctly, the false metrics FP
and FN indicate wrong predictions. All these mea-
sures are indicated in the Confusion Matrix drawn up
for the purpose of evaluating the performance of the
model, as in Table 6. A confusion matrix is a ta-
ble of representation of actual and predicted classes.
An entry Ci,j in any cell of the confusion matrix tells
the quantity of data tuples with actual classi which
was estimated by the model as class j . The accuracy
level of the model is indicated by the quantities along
the diagonal cells (TP&TN): the higher the diagonal
quantity, the higher the accuracy.

For an ideal case, the accuracy is 100% when TP+TN
is equal to P+N and FP=FN=zero.

The confusion matrix in Fig.6 helps us evaluate the
capability of a model in recognizing tuples of various
classes.

Table 6: Confusion Matrix
Pre-

dicted
Class

Pos-
itive

Negative Total

Posi-
tive

TP FN P

Actual
Class

Neg-
ative

FP TN N

Total P’ N’ P’+N’ or
P+N

The general performance metrics for any prediction
model is the accuracy and error rate. As per [12], the
accuracy of a model for a given test data is defined
as the percentage of test data tuples that are correctly
classified by the model. That is,

Accuracy (in %) = (TP+TN)
(P+N) × 100

This metric can also be called the recognition rate
of the model.

The error rate or misclassification rate of model
is defined as the ratio (in percentage terms) between
test data tuples that are incorrectly classified and the
total test data tuples.

Error Rate (in %) = (FP+FN)
(P+N) × 100

Normally, the accuracy and error rates are the most
effective metrics when the distribution of the classes
are relatively balanced.

With the accuracy values calculated, a kappa value
indicates how well the model is predicting compared
to random predictions. The metric indicates the ac-
curacy of the system compared to random accuracy.

Kappa = (Total Accuracy−Random Accuracy)
(1−Random Accuracy) where

Random Accuracy =
(NN ′ +PP ′)

(P+N)(P ′ +N ′)

The no information rate or the prevalence of model
is defined as the largest class percentage in the data.
The idea is that a useful model should do better than
you could do by always predicting the most common
class.

No Information Rate= P
(P+N)

Other than these global metrics, various other metrics
are derived for each of the class labels as per Table 7.

The suitability of a given metrics depends on the type
of problem, class prevalence and application of the
model.

325 | 330



Journal of Power Technologies 100 (4) (2020) 315–330

Table 7: Model Metrics
Model Metrics Description Derivation

Sensitivity/Recall/True
Positive Rate(TPR)

True Positive (recognition)
Rate/Measure of Completeness

TP/P

Specificity/Selectivity/True
Negative Rate(TNR)

True Negative (recognition)
Rate,Measure of Completeness

TP/N

Precision/Positive Prediction
value(PPV)

When the prediction is positive,how
often is it correct(Exactness)

TP/(TP+FP)

Negative Predicted
Value(NPV)

when the prediction is negative,how
often is it correct

TN/(TN+FN)

Miss Rate/False Negative
Rate(FNR)

probability of false positive prediction 1-Sensitivity

Fallout/False Positive
Rate(FPR)

probability of missing a genuine class 1-Specificity

Prevalence Class percentage in the data P/(P+N)
Balanced Accuracy Average of sensitivity and selectivity (Sensitiv-

ity+Specificity)/2
F1-Score Harmonic average of precision and recall (2*Precision * Re-

call)/(Precision+Recall)

10.1 Model Evaluation under This
Study

The various metrics of the models in this study are
calculated for each of the classes using the R package
‘caret’ as per [17]. The results of the summary metrics
are tabulated in Table 8.

The results on summary metrics indicate that:

1. The global accuracy of all the models is in the
range 71% to 80% except in the case of CPAR.

2. CPAR model exhibits the lowest accuracy of
21.51% for the parameter TTRol20 801.

3. CMAR model exhibits comparatively higher ac-
curacy levels for all parameters compared to the
other two models.

4. Kappa values for all models for parameters
TTRol20 808 and PTRol20 803 indicate moder-
ate agreement and performance.

5. All three models exhibit a very low kappa value
for the parameters TTRol20 801 and FTRol20 -
801 indicating that these parameter values have
higher variance compared to the other parame-
ters.

The other quality metrics for the most prevalent class
for each parameter are tabulated in Table 9.

The results of these metrics indicate that:

1. The performance of all three models are similar
for the parameter TTRol20 808.

2. Both CBA and CMAR models exhibited highest
sensitivity for the parameters TTRol20 801 and
FTRol20 801.The sensitivity of CPAR model is
lower than the other models. Specifically, CPAR

model exhibits very low sensitivity for the param-
eter TTRol20 801 for the most prevalent class.

3. Both CBA and CMAR models exhibit poor se-
lectivity for the parameters TTRol20 801 and
FTRol20 801. CPAR is a good model for all pa-
rameters in terms of selectivity.

4. CPAR is more precise in classification compared
to the other two models. The model has the
highest precision value for PTRol20 803.

5. CMAR outperforms the other two models in the
precision of predicting negative classes, with its
NPV value higher than other models for all pa-
rameters.

6. CBA did not predict any negative class for any of
the tuples in predicting parameter TTRol20 801.
The model is highly selective for that parameter.
CPAR is poorer than the other two models in this
aspect.

7. Both CBA and CMAR models show high type-
1 error (false positive rate) for the parameters
TTRol20 801 and FTRol20 801. CPAR shows
high type-2 error (false negative rate) for the
same parameters.

8. The balanced accuracy for the prevalent class is
higher for CPAR compared to the other two mod-
els. The accuracy values are also consistent for
all parameters in the range 0.7 to 0.8. However,
both CBA and CMAR models show lower accu-
racy values for the parameters TTRol20 801 and
FTRol20 801 in the most prevalent class. Their
accuracy values range from 0.5 to 0.78.

9. The F1 score for the CBA model is in the range
0.82 to 0.85 for all parameters. This shows the
CBA model is performing consistently in the esti-
mation of all parameters. However, both CMAR
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Table 8: Model Summary Metrics Values

Variable Model Ac-
cu-

racy

CI interval Kappa
value

CBA 0.7621 (0.7587,
0.7654)

0.4861

TTRol20 -
808

CMAR 0.7638 (0.7604,
0.7671)

0.491

CPAR 0.7634 (0.7601,
0.7668)

0.4901

CBA 0.7415 (0.738,
0.7449)

0

TTRol20 -
801

CMAR 0.7463 (0.7428,
0.7497)

0.0373

CPAR 0.2151 (0.2118,
0.2183)

0.0331

CBA 0.7348 (0.7313,
0.7383)

0.0118

FTRol20 -
801

CMAR 0.7417 (0.7382,
0.7452)

0.0576

CPAR 0.7192 (0.7157,
0.7228)

0.3418

CBA 0.7623 (0.7589,
0.7656)

0.4541

PTRol20 -
803

CMAR 0.8023 (0.7992,
0.8055)

0.5581

CPAR 0.7761 (0.7728,
0.7793)

0.5412

and CPAR have low scores for the parameter
TTRol20 801. In terms of F1, the score of CPAR
model is poorer than the other two.

10.2 Model Selection

Given the evaluation metrics of the models, it may be
simpler to select the model with the highest accuracy.
However, the metrics provided only the estimates with
95% confidence limits. The accuracy of the models is
expected to be higher than the no information rate,
indicating that prediction by the model is not a chance
that it always predicts the highest class. Hence, the
overall accuracy rate with a 95 percent confidence in-
terval is calculated and tested for a one-sided hypoth-
esis to ascertain if the accuracy is statistically higher
than the ”no information rate”.

The probability value p for the success event is cal-
culated using the binomial distribution tables and the
value is compared with the level of significance α. If
p>α then we do not reject the null hypothesis that
accuracy of the model is not more than the no infor-
mation rate. If p<α we accept the alternative hypoth-
esis. The p-values obtained in this test are compared
with the significance level of 0.05 to select a suitable

model. The accuracy, no information rate and the
p-values obtained for all the models evaluated in this
study are set out in Table 10.

The test indicates that

1. All three models exhibit a statistically significant
accuracy level more than the no information rate
for the parameters TTRol20 808 and PTRol20 -
803.

2. For the other two parameters TTRol20 801 and
FTRol20 801, only CMAR model exhibits a sta-
tistically significant accuracy level that is higher
than the no information rate.

3. Further, the overall accuracy values of CMAR are
higher than the other two models for all param-
eters.

10.3 Receiver Operating Characteris-
tics Curves

The Receiver Operating Characteristics (ROC) curve
is a popular model comparison tool based on two ma-
jor evaluation metrics-sensitivity and specificity. The
ROC curve helps us to ascertain the relationship be-
tween true positive rates and false positive rates. The
area under the ROC curve indicates the capability of
accurate prediction by the model. Sensitivity gives
True Positive Rate and 1-specificity gives False Pos-
itive Rate. The plot uses False Positive Rate(FPR)
on the X-axis and True Positive Rate(TPR) on the
Y-Axis. The diagonal line represents random guess-
ing with equal probability of TPR and FPR. Thus, the
accuracy of the model is based on how close the curve
is to the diagonal line and the area covered. A model
with perfect accuracy would have covered the total
area and hence will be 1.0. The ROC plot and the
area under the curve (AUC) are calculated with the R
package ‘pROC’ as per [18]. The various AUC values
for the models in this study are as in Table 11.

The table shows that the overall AUC values of the
CMAR model for all parameters is higher compared
to the other two models. Since the CBA model pre-
dicted all the data as uniclass, we cannot calculate the
AUC values for the parameter TTRol20 801. Based
on the results we can conclude that CMAR has better
predictive ability than CBA and CPAR.

327 | 330



Journal of Power Technologies 100 (4) (2020) 315–330

Table 9: Model Metrics Values
Metrics Model TTRol20 808 TTRol20 801 FTRol20 801 PTrol20 803

Prevalence 0.6366 0.7415 0.7345 0.6809

Sensitivity/ CBA 0.8518 1 0.9981 0.8378
Recall/ CMAR 0.8518 1 0.9998 0.8454
True Positive Rate(TPR) CPAR 0.8518 0.2306 0.7845 0.7458

Specificity/ CBA 0.6184 0 0.01683 0.6288
Selectivity/ CMAR 0.6187 0.02618 0.04404 0.7128
True Negative Rate(TNR) CPAR 0.6184 0.822 0.6057 0.8453

Positive Predicted CBA 0.7964 0.7415 0.73748 0.8281
Value(PPV)/ CMAR 0.7965 0.74651 0.7432 0.8627
Precision CPAR 0.7963 0.788 0.8463 0.9114

Negative CBA 0.7043 NA 0.76243 0.645
Predicted CMAR 0.7044 1 0.98769 0.6836
Value(NPV) CPAR 0.7043 0.2714 0.5039 0.6091

Miss Rate/ CBA 0.1482 0 0.0018 0.1621
False Negative CMAR 0.1482 0 0.0001 0.1545
Rate(FNR) CPAR 0.1482 0.7694 0.2155 0.2541

Fall Out/ CBA 0.3816 1 0.98317 0.3712
False Positive CMAR 0.3812 0.97382 0.95596 0.2871
Rate(FPR) CPAR 0.3816 0.178 0.3943 0.1547

CBA 0.7351 0.5 0.50747 0.7333
Balanced CMAR 0.7352 0.51309 0.52192 0.7791
Accuracy CPAR 0.7351 0.7674 0.6951 0.7955

CBA 0.8231 0.8515 0.84822 0.8329
F1 Score CMAR 0.8232 0.51309 0.85261 0.854

CPAR 0.8231 0.3568 0.8142 0.8203
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Table 10: Model Selection Parameters
Variable Model Ac-

cu-
racy

No
Info
rate

P-
Value[Acc>NIR]

CBA 0.7621 0.6366 <2.2e-16
TTRol20 -
808

CMAR 0.7638 0.6366 <2.2e-16

CPAR 0.7634 0.6366 <2.2e-16

CBA 0.7415 0.7415 0.5021
TTRol20 -
801

CMAR 0.7463 0.7415 0.002996

CPAR 0.2151 0.7415 1

CBA 0.7348 0.7345 0.4441
FTRol20 -
801

CMAR 0.7417 0.7345 2.64E-05

CPAR 0.7192 0.7345 1

CBA 0.7623 0.6809 <2.2e-16
PTRol20 -
803

CMAR 0.8023 0.6809 <2.2e-16

CPAR 0.7761 0.6809 <2.2e-16

Table 11: Area under the curve values
Model TTRol20 -

808
TTRol20 -

801
FTRol20 -

801
PTrol20 -

803

CBA 0.7709 NA* 0.3974 0.7171
CMAR 0.8756 0.881 0.9462 0.8956
CPAR 0.8558 0.8658 0.932 0.8669

11 Conclusion

This study was carried out to gain a better under-
standing of the process system with data science con-
cepts and to optimize the system in light of the newly-
acquired insights. The main objective was to iden-
tify the operating regions that the human intellect
may not be able to visualize, as the data contains
multiple variables and hundreds of thousands of data
points. The operating regions identified were ana-
lyzed to obtain a viewpoint on performance of the
process. It was observed that the three regions iden-
tified correspond to: start up, operating in normal
region and operating in refined region of operation.
From the monitored variables, association rule mining
techniques and multicollinearity analysis were used to
identify the key parameters that contribute to the sta-
bility of the system. The identified key performance
indicators significantly contribute towards the stabil-
ity of the system and make it easier for the opera-
tors to choose the optimal operating region. Three
predictive models were built based on the association
rules for each of the key parameters and performance
was evaluated by calculating the various metrics. All
the models were evaluated for their capability based

on test performance on various metrics. Considering
these metrics, we can select CMAR as the best model
of the three based on the statistical comparison of
Accuracy with the No Information rate and the Area
under the ROC curve. We can further improve pre-
diction accuracy by using other high-level models such
as Bayesian classification, decision tree induction and
support vector machines. Further, we can also apply
other ensemble techniques such as boosting, bagging
and stacking to improve predictive accuracy for all key
parameters. The study was done using historical data
recorded in the DCS system, but in the future this
can be conducted on live data directly coming out of
the system; that will help to monitor the system with
fewer parameters and will alarm the operator if the
system leaves the normal operating range. In addition
to this, the control engineer can tune the parameters
for better stability using the key performance indica-
tors and the prediction models, so that the efficiency
of the process improves with no additional resources.
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