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Abstract

Many companies operating on the natural gas market use natural gas storage to balance production and transport capacities
with major variations in gas demand. This paper presents an approach to predicting users’ gas flow nomination in underground
gas storage by different users. A one-year prediction horizon is considered with weekly data resolution. Basic models show
that whereas for the great majority of users we can predict nomination based only on weather data and technical parameters,
for some users additional macro-economic data significantly improved prediction accuracy. Various modeling techniques
such as linear regression, autoregressive exogenous model and Artificial Neural Network were used to develop prediction
models. Results show that for most users an Artificial Neural Network provides optimal accuracy, indicating the non-linearity
of the relationship between input and output variables. The models developed are intended to be used as support for facility
operation decisions and gas storage product portfolio modifications.

Keywords: underground gas storage; long term forecasting; artificial neural networks; prediction models; demand
forecasting

1. Introduction

Natural gas is produced in roughly constant quantities
throughout the year. A large part of gas supplies are trans-
ported immense distances. Gas consumption by industry,
power stations and households varies according to the sea-
son and time of day. Demand is much higher in winter than in
summer, and more gas is used during the day than at night.
To adjust to the seasonal variations in demand and the daily
peaks, gas must be held in underground gas storage (UGS)
facilities. UGS are described in detail in [1].

Much research has been done on UGS. Some re-
searchers focus on directions in UGS development such
as steady gas supply, energy balancing and inflow perfor-
mance [2, 3, 4]. Together with the development of UGS facil-
ities, research has focused on UGS optimization, in both eco-
nomic [5] and technical terms [6, 7]. UGS facilities can be op-
timized through improving gas compressor performance [7]
and/or gas flow distribution [6]. Another approach to UGS
optimization is to define an optimal strategy (decision rules)
for plant operation.

As presented in [7] aggregated predicted gas flow nomi-
nations for storage services is a main optimization algorithm
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input variable. Storage services demand is expressed in
hourly nominations, i.e., hourly values of gas flow and flow di-
rection to/from UGS (negative nominations indicate gas with-
drawal from UGS and positive nominations indicate gas in-
jection). Usually, gas flow nomination trajectory is known one
day in advance. UGS users are obligated to submit short-
term hourly gas flow nomination schedules. That way, UGS
operators can safely prepare the facility for nominated gas
flow injections/withdrawals. However, to optimize UGS oper-
ations an extended horizon of defined gas flow nomination
should be considered, in particular a one year horizon is rec-
ommended, taking into account the one year UGS working
cycle. A long-term gas flow nomination horizon is required to
best optimize storage. Technical conditions affect the stor-
age caverns/wells (depending on UGS type), which depend
on the storage filling level. Therefore short-term operational
decisions impact UGS working conditions over the one year
time horizon.

Prediction models for UGS are made mainly for estimat-
ing cavern depth (e.g. pre-construction, feasibility study)
or injection performance. Optimal cavern depth, produc-
tion and injection performance are estimated in [8] based on
IMEX simulation. In [9] the authors present a downhole in-
flow performance forecast based on data from field develop-
ment used to predict inflow performance. The prediction was
made for 15 injection-production cycles and appeared to be
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better than the traditional equation.
The natural gas market is strongly connected to UGS work

(e.g., users can buy a larger amount of gas—if the price is
lower—and store it in UGS) therefore gas demand forecast-
ing has been an area of interest in many papers. In [10] the
authors present models for forecasting residential monthly
natural gas consumption. The method relies on dividing a
year into two seasons—heating and non-heating—and esti-
mating individual autoregressive time series models for each
period. For Ankara, Turkey an Artificial Neural Network
based model for forecasting gas consumption [11] and model
using the degree-day concept is presented in [12]. Prediction
models forecasting industrial end-use natural gas consump-
tion in a 1–3 year horizon are presented in [13]. The fore-
cast is obtained by combining three different components:
one that captures the trend of the time series, a seasonal
component based on the Linear Hinges Model, and a tran-
sitory component to estimate daily variations using explana-
tory variables. Gas demand forecasting models have been
developed for many countries e.g. Spain [14], Turkey [10],
India [15] Taiwan [16].

The papers above present gas demand forecasting, which
plays an important role in most decisions in the natural gas
market (especially for entities involved in trade) and transmis-
sion grid management. In the case of UGS management,
general gas demand forecasting is insufficient. There is a
need to develop an algorithm to predict long-term demand
for storage services. Storage services demand is also an
input variable for most of the UGS optimization algorithms
described earlier.

The main interest in this paper is to develop models that
are able to predict the gas flow nomination of UGS users
in a one year horizon with weekly resolution. Nominations
defining demand for gas storage services are expressed in
kWh. A negative nomination signifies gas withdrawal from
UGS and a positive nomination signifies gas injection to stor-
age.

The outline of this paper is as follows: Historical data used
to develop models is introduced in section 1. Data analysis is
presented in section 2. Modeling techniques are presented
in section 3. Section 4 describes the process of modeling
and gives the results obtained.

2. Theory

2.1. Historical Data
The models are developed based on historical data from a

real underground gas storage location in Europe. In the UGS
presented in this paper, the gas is stored in porous structures
of former natural gas reservoirs. Gas is injected into storage
via dedicated wells with compressors.

In this paper four selected UGS user profiles are pre-
sented that store gas in the analyzed UGS. Prognostic mod-
els of those four users were developed on historical data
from a period of 3 years (2013–2016), except for one user
where the historical data contained measurements from one
year (July 2014–June 2015)

Table 1: UGS user limitations
Factor Description Unit

LIMIT_ENTRY_MAX_QN Maximum rate for gas injection kWh
LIMIT_EXIT_MAX_QN Maximum rate for withdrawal kWh

Table 2: Weather data
Variable Description Unit

TEMP Daily average temperature Fahrenheit
TEMP_MAX Maximum temperature Fahrenheit
TEMP_MIN Minimum temperature Fahrenheit
WIND_SPEED Daily average wind speed knots
MAX_WIND_SPEED Maximum wind speed knots

For legal reasons, users’ gas flow nominations were nor-
malized; this operation has no impact on the performance of
models presented in this paper (general behavior and nomi-
nation trends were preserved).

2.1.1. Models output
Models were developed to predict gas storage users’ gas

flow nominations with a one year prediction horizon (weekly
aggregated). Historical data contains a daily nomination,
therefore weekly aggregation of nominations were calculated
according to formulas:

wcompensation =
7

nweek days
(1)

yagg = wcompensation ·

7∑
day=1

yday (2)

where: yagg—aggregated value of gas flow nominations;
nweek days—number of days in week; yday—day value of gas
flow nomination; wcompensation—factor was added to over-
come the issue of weeks where the number of days is lower
than 7 (for example, the first week of the year starting on a
Tuesday) therefore the aggregated value for that week would
be much lower than for full weeks.

2.1.2. Limits and working gas volume
Each storage user determined (signed in its contract) its

own storage capacity factors, as presented in Table 1.
Limit variables indicate that non-linear models can give

better prediction accuracy than linear models.

2.1.3. Weather data
Weather data was downloaded from the National Center

for Environmental Information [17] and included data from
weather stations in the capital cities of European Union
member states and Switzerland. The data for each weather
station comprised daily measurements from January 2013
to December 2015 and is presented in Table 2. Weather
data was chosen as a model input variable, because UGS
users are trading in the whole of Europe and weather
data is the main input in gas demand forecasting models
([10, 11, 12, 13, 14, 15, 16]).
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Table 3: Additional weather data
Variable Description

WIND_SP_SQRT Square root of daily average wind speed
WIND_SP_SQRT
*TEMP

Product of square root of daily average wind speed
and daily average temperature

Table 4: Gas prices

Variable Description Units

Ger-
many

Russian Natural Gas border price in Germany US D
thous. m3

Henry_Hub Natural Gas spot price at the Henry Hub terminal
in Louisiana

US D
thous. m3

Japan Indonesian Liquefied Natural Gas in Japan US D
thous. m3

Weather variables used as model inputs were calculated
as a weighted average according to formulas:

T EMP =

∑ j=1
country w j · T EMP j∑

w j
(3)

WINDS PEED =

∑ j=1
country w j ·WINDS PEED j∑

w j
(4)

where: TEMP—weight average of a temperature;
TEMPj—temperature in capital of j country; wj—population
of j country; WIND SPEED—weight average of a wind speed;
WIND SPEEDj—wind speed in j country.

Finally, additional variables were added to the set of pos-
sible input variables. Variables are presented in Table 3.

2.1.4. Gas prices
Gas prices contain the data set out in Table 4 with monthly

granulation. The data was extended to daily granulation by
linear interpolation. Despite the fact that prediction is made
for gas nominations with one week granulation, gas prices
data was extended to daily granulation to create more input
variables (different data delays) and produce better correla-
tion analysis; the correlations coefficients were calculated for
daily delayed data.

Table 5: Macro-economic data
Variable Description unit

DGP Domestic Gross Product for Germany mil-
lions

EV_PETROL Evolution Petroleum Corporation stock prices for
market opening

USD

Ind_Prod Industrial Production for Germany -
Ind_Prod_IDX Industrial Production Index for Germany -
Oli_IL Historical prices for Oil India Limited USD
CO2_emission CO2 emission price on the European Climate

Exchange

EUR
tonCO2

CO2_open CO2 emission price on the European Climate
Exchange, price for market opening

EUR
tonCO2

CO2_high CO2 emission price on the European Climate
Exchange the highest price of the day

EUR
tonCO2

CO2_low CO2 emission price on the European Climate
Exchange, the lowest price of the day

EUR
tonCO2

Table 6: Additional data
Variables Description

JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUN 1—for days in specified month
JULY 0—for days not in specified month
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER

1—for Christmas days
SW_Christmas 0—rest days

1—for Easter days
SW_Easter 0—rest days

1—1st of May
SW_1May 0—rest days

1—for New Year’s Eve and New Year’s Day
SW_New_year 0—rest days

1—First November
SW_1Nov 0—rest days

1—15th August
SW_15Aug 0—rest days

1—6th January
SW_6Jan 0—rest days

1—Corpus Christi
SW_CCh 0—rest days
week_nb Week number (1,2,3. . . 52)
month_nb Month Number (1,2,3,. . . ,12)

2.1.5. Macro-economic data
Due to the varied uses of natural gas, such as electric-

ity production, industrial and residential use, some macro-
economic factors were considered as possible input vari-
ables. The factors are presented in Table 5; for each fac-
tor where values granulation is less dense than daily values,
the data was extended to daily granulation by linear interpo-
lation. The data were extended to daily granulation for the
same reasons as the gas prices data.

2.1.6. Defined data
User gas flow nomination signs (positive for injection, neg-

ative for withdrawal) for certain seasons are repeatable (gas
injection to UGS during summer and gas withdrawal from
UGS during winter) therefore some additional variables were
created. Newly-created variables describe the current sea-
son of the year. Additional variables describing periods of
international holidays were created, since those days can be
the cause of unusual user behavior. The newly-created vari-
ables are presented in Table 6.

If in a given week there are the last days of April and the
first days of May then variables: APRIL, MAY and SW_1May
have the value 1.

2.2. Data delays

Variables presented in sections 1.2–1.6 were considered
as an input variable set from which input data for each model
was selected. This variable set was extended by additional
variables created by shifting weather data and gas prices
data. The weather data was delayed daily—the maximum
delay was 31 days—and accelerated daily: the maximum
acceleration was 7 days. Gas prices were only delayed with
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a maximum delay of 31 days. Daily shifting data was con-
sidered to multiply and diverse possible input variables (user
can rely on historical weather data while making decisions
about gas flow nominations), also daily modeling is more ef-
ficient than weekly (during aggregation we lose information).
Furthermore, weather data was accelerated in light of UGS
users’ operating activities: since gas demand is dependent
on temperature, users can rely on weather forecasting (in
our case historical data acceleration) to determine gas flow
nomination for the immediate future period (e.g. week).

Variable delay is marked at variable description with the
signs (-) for delay and (+) for accelerate. After the sign,
the number of days for shifting is noted, for example feature
TEMP-4 means that feature TEMP has been delayed for four
days. Data weekly aggregation was performed after delay-
ing the daily data. Gas flow nominations were also delayed
daily (to analyze autocorrelation) with a maximum delay of
365 days (one year). In ARX models gas flow nominations
delayed for seven days (one week) were used due to the out-
put data resolution requirement being one week.

2.3. Data analysis
Historical data presented in section 2 was analyzed to dis-

cover main tendencies and behavior of users.
Several main conclusions were obtained:

1. Mean temperatures and max temperatures have bi-
modal distribution, and minimum temperatures have
unimodal distribution with a skewing tendency to the
right side of the histogram. Histograms representing
distributions are presented in Fig. 1.

2. All UGS users have a general annual trend: withdrawal
in winter and injection in summer.

3. User nomination trends vary from user to user, showing
different user profiles. User profiles are dependent on
user operation areas, like industry, local market etc.

4. For some users we can see one week autocorrelation
up to 5 weeks in the past. In Fig. 2 the autocorrelation
coefficient (Pearson coefficient) values through the year
are presented for one user. The upper graph shows a
one year horizon and the bottom graph shows a three
month horizon.

5. For all users we can see high correlation with tempera-
ture (mean, maximum and minimum), moreover for one
user gas flow nomination correlation with LIMIT_EXIT
MAX_QN is 0.31 (for entry, the correlation is 0.21) for
another user the correlation with a limit both for exit and
entry is 0.15, for all other users the correlation with in-
jection and withdrawal limits (Pearson correlation coef-
ficient) is below 0.07.

6. For most input variables the Pearson and Spearman
correlation coefficients have a similar value.

2.4. Modeling
Underground gas storage user behavior varies depending

on user profile. In this paper four users of UGS are pre-
sented. For each user various prediction techniques were

Table 7: Abbreviations
Abbreviation Model

LB Linear Basic
LA Linear Advanced
LBA Linear Basic with autoregression
LAA Linear Advanced with autoregression
ANNB Artificial Neural Network Basic
ANNBA Artificial Neural Network Basic with Autoregression
ANNA Artificial Neural Network Advanced
ANNAA Artificial Neural Network Advanced with Autoregression

tested to obtain the best prediction model. As is presented,
for each user a different technique gave the best solution.
The reason for this is that users use gas storage for differ-
ent purposes. A short summary of the modeling techniques
used is presented below.

2.4.1. Linear Regression
Linear regression (LR) assumes that the output value is

the sum of input variables multiplied by determined weight
plus intercept. The main assumption of linear regression the-
ory is that input and output variables are linearly dependent
on each other. The unknown intercept and weight are de-
termined through the least squares method. Input variables
were selected by forward feature selection.

2.4.2. Autoregression
Autoregression with exogenous inputs (ARX) is similar to

linear regression models, the only difference being that his-
torical prediction values are considered as additional input.
Model can be represented algebraically as:

yt = F (yt−7, ut, ut−1, ..., ) (5)

where: yt—prediction for time t, yt-7—historical prediction
from one week before, ut—external variables. F is approxi-
mation function. In this paper linear regression and an Arti-
ficial Neural Network were used as approximation functions.
External variables were selected from historical data pre-
sented in section 1.

2.4.3. Artificial Neural Network
Artificial Neural Network (ANN) is a non-linear approxi-

mation method. The advantage of using ANN is the good
modeling it gives of non-linear dependencies, like in the
case presented in the paper: LIMIT_ENTRY_MAX_QN and
LIMIT_EXIT_MAX_QN. Input variables were selected based
on forward feature selection results, Pearson and Spear-
man correlation analysis and personal conclusions based on
knowledge of UGS operation.

3. Results and discussion

In this section the abbreviations presented in Table 7 are
used. Basic models are models with input variables selected
from the calendar (Table 6), weather (Table 2) and technical
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Figure 1: Temperature distribution

Figure 2: Pearson coefficient
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data (Table 1). In advanced models gas market and macro-
economic input variables were also considered. The dis-
tinction between basic and advanced models was made in
light of the final prediction horizon, which is one year; hence
model input variables have to be forecast for the same hori-
zon. Basic model inputs (weather forecast, calendar and
technical data) have lower forecasting uncertainty than ad-
vanced model inputs (macro-economic factors). Obviously, a
one year weather forecast has forecast error, but the error is
considerably smaller than the error in attempting to forecast
gas prices, CO2 emission prices or other macro-economic
factors. Therefore basic models are used to predict real be-
havior of UGS users in the future, while advanced models
can be used to conduct WHAT-IF analyses. Advanced mod-
els predict UGS user behavior for various gas price ranges
or macro-economic data. An attempt to develop advanced
models was made for all users, but prediction error compared
to basic models changed considerably for only two of them
(user 1 and user 3).

Model validation was carried out using a 3-fold cross vali-
dation technique, where data was divided into folds accord-
ing to years (for example, training fold: years 2013 and 2014,
validation fol

2015)
The models developed were evaluated by three prediction

accuracy coefficients:

R2 =

∑n
t=1(ŷt − y)2∑n
t=1(yt − y)2 (6)

RMS =

√√√
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)2 (7)

MAPE =

∑n
i=1(| yt−ŷt

yt
|)

n
∗ 100% (8)

where R2 is the coefficient of determination and indicates
the proportion of the variance in the dependent variable that
is predictable from the independent variable. RMS is the
square root of the arithmetic mean of the squares of the dif-
ference between the measured and predicted value, MAPE
(mean absolute percentage error) is the measure of predic-
tion accuracy, yt is the measured value of output variable y
in time t, ŷt is the predicted value of output y in time t and yt

is the mean value of y.
For model prediction performance and comparison be-

tween developed models, the RMS coefficient was selected
as the most reliable, although the MAPE coefficient is more
intuitive. This is because of the user nomination trends (vari-
ation above and below zero level) and for small nomination
with bad prediction MAPE coefficient generates excessive
values. The example can be seen in user 1 results where for
model LB and LAA the RMS results are comparable (9.38
and 9.32) to R2 but the MAPE coefficient has significantly
different values.

Table 8: USER1 modeling results

MAPE RMS R2

LB 76.4 150.5 0.92
LBA 75.4 156.6 0.92
LA 63.7 134.3 0.94
LAA 43.9 149.5 0.93
ANNB 48.5 130.5 0.94
ANNBA 52.5 144.6 0.93
ANNA 71.1 124.4 0.95
ANNAA 60.5 125.2 0.95

Table 9: User 1 model description

Input variables TEMP_MAX, TEMP-7, LIMIT_ENTRY_MAX_QN

First layer 6
Second layer 6

3.1. USER 1

The results presented in Table 8 show that of the basic
models the ANN-based model enjoys the best prediction ac-
curacy. Moreover, the autoregression model gives a lower
level of accuracy, which means the nomination actions are
not repeatable. Advanced models for linear regression mod-
els gave improved prediction accuracy, but lower than for the
ANNB model. The ANNA model enjoys the best prediction
accuracy.

ANNB model architecture and input variables are pre-
sented in Table 9. Since the model is based on weather data,
we can imply that the user uses this storage to compensate
for varying energy and heat demand (temperature variables
gives information on general energy demand) while the gas
supply is constant. The LIMIT_ENTRY_MAX_QN input vari-
able shows that the user submitting the gas flow nomination
is constrained by limits signed in the contract.

The ANNA model has the same input variables
as the ANNB model presented in Table 9 plus
’CO2_emission_price’. For the ANNA model RMS de-
creased to 6.1 compared to ANNB.

This case also shows that we can obtain a good prediction
accuracy training model based on one season’s data (sum-
mer, user nominate injection) and predict the other season’s
data (winter, user nominate withdrawal). Usually a neural
network is not suitable for extrapolation, but by using the
cross validation technique a network architecture has been
chosen that enables capture of input-output dependencies
with satisfactory results (R2 greater than 0.9). The measure-
ments, predicted values and confidential intervals are pre-
sented in Fig. 3. Confidence intervals (α = 95%) are calcu-
lated in the range:

< ypred − t α
2

s
√

n
: ypred + t α

2

s
√

n
> (9)

where: ypred is predicted value, t α
2

is upper α
2 critical value

for t-distribution with n-1 degrees of freedom, s is residuals
standard error and n is sample size.
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Figure 3: User 1 measurements and prediction comparison for ANNB model

Table 10: User 2 modeling results

MAPE RMS R2

LB 91.8 334 0.63
LBA 92.3 303 0.71
LA 81.6 351 0.61
LAA 81.4 329 0.66
ANNB 83.5 283 0.74
ANNBA 66.7 279 0.75
ANNA 84.5 298 0.72
ANNAA 75.0 308 0.7

3.2. USER 2

User results presented in Table 10 clearly show that basic
models have better prediction accuracy than advanced mod-
els, which implies that UGS storage is used to compensate
varying energy demand. Lack of prediction improvement af-
ter considering macro-economic and gas prices data shows
that the user is not trading on the market.

ANN-based models have significantly better predic-
tion accuracy than Linear Regression-based models.
In ANN models additionally LIMIT_EXIT_MAX_QN,
LIMIT_ENTRY_MAX_QN input variables were added,
providing better artificial neural network performance in
modeling non-linear dependencies. This also shows that
the user is constrained by injection and withdrawal limits,
which might mean that the user has signed a contract for
insufficient limits to operate normally.

The best models were obtained for the ANNBA modeling
technique, showing that user current nominations are based
on the nomination made one week earlier. Model architec-
ture and input variables are presented in Table 11. The mea-
surements, predicted values and confidential intervals are
presented in Fig. 4.

3.3. USER 3

The results presented in Table 12 show that the best pre-
diction is obtained with advanced models, showing that by

Table 11: User 2 model description

Input
vari-
ables

TEMP, TEMP_MIN, MAX_WIND_SPEED_m/s-7,
LIMIT_EXIT_MAX_QN, LIMIT_ENTRY_MAX_QN,
TEMP_MAX_Cels+3, WIND_SP_SQRT*TEMP+7,

TEMP_MAX_Cels-5, TEMP_MAX-4, TEMP_MAX_Cels-1,
WIND_SP_m/s_SQRT-1

First
hid-
den
layer
size

16

Sec-
ond
hid-
den
layer
size

0

Figure 4: User 2 measurements and prediction comparison

adding macro-economic features we can significantly im-
prove model performance. Basic models have lower accu-
racy than advanced models, implying user dependency on
gas market and economic factors. For that reason the au-
toregressive modeling technique did not improve prediction
accuracy (RMS is comparable).

The advanced model features are presented in Table 13.
Input variables are related to: weather (temperature, wind
speed), gas market (gas price), energy market (CO2 emis-
sion prices) and macro-economic (Oli_india_limited). Tem-
perature input variables contained delayed data (from the
user view it is historical weather data) and accelerated

Table 12: User 3, modeling results

MAPE RMS R2

LB 79.0 207.3 0.71
LBA 72.4 196.9 0.75
LA 49.5 166.4 0.82
LAA 49.1 167.8 0.83
ANNB 67.1 184.0 0.74
ANNBA 60.1 185.6 0.78
ANNA 67.9 220.0 0.69
ANNAA 73.5 219.2 0.69
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Table 13: User 3 ANN model
Input
vari-
ables

TEMP_MAX-3, Oli_IL, MAX_WIND_SPEED_m/s+3,
Natural_Gas_Contract, MARCH, WIND_SP_SQRT*TEMP-9,

TEMP_MIN_Cels+7, TEMP_MAX_Cels-4, CO2_high,
WIND_SP_SQRT+3, TEMP_MAX_Cels-5,

CO2_emission_price, Henry_Hub -4, WIND_SP_SQRT-15

First
hid-
den
layer
size

6

Sec-
ond
hid-
den
layer
size

4

Figure 5: User 3 measurements and prediction comparison

data (from the user view this is the weather forecast), the
user therefore relies on both current weather and forecasts.
Therefore, the gas flow nomination prediction for this user
with a one year horizon will require prediction of all input vari-
ables in the case of an advanced model.

The comparison between measurement and prediction
with confidence interval is presented in Fig. 5.

3.4. User 4

For this user only basic models were developed. For ad-
vanced models, the algorithm did not choose any macro-
economic or gas market features. The results are presented
in Table 14. The RMS coefficient has similar values for all
models, but the best seems to be the Artificial Neural Net-
work.

Table 14: User 4 modeling results

MAPE RMS R2

LB 103.9 473.6 0.65
LBA 93.0 460.7 0.73
ANNB 84.1 442.5 0.74
ANNBA 84.5 447.7 0.74

Table 15: User 4 model description

Input
variables

TEMP_MAX, TEMP-1, WIND_SPEED-30,
LIMIT_EXIT_MAX_QN, LIMIT_ENTRY_MAX_QN,

week_nb

First hidden
layer size

6

Second
hidden layer
size

4

Figure 6: User 4 measurements and prediction comparison

The results presented in Table 15 imply that the user uses
the gas storage to compensate irregular gas consumption in
power plants due to the changing seasons (temperature in-
put variables) and varying wind farm production (wind_speed
input variable). In user model input variables a week_nb fea-
ture has been selected, implying that users’ gas flow nomi-
nations are dependent on the current year period (user has
similar nominations for the same months/weeks during many
years).

The comparison between measurement and prediction
with confidence area is presented in Fig. 6.

4. Conclusions

This paper presents an approach toward the gas flow
nomination prediction of underground gas storage users.
The UGS users were presented. Prediction models are
based on weather, calendar, technical and macro-economic
data. The results show that depending on the user profile,
the choice of different model techniques provides the best
outcomes. However, non-linear models usually have better
prediction performance.

It has been shown that depending on user company profile
and operation areas we can build prediction models on basic
features (for user 2 and user 4 only basic models were devel-
oped) such as temperature variables (compensation of sea-
sonal changes in gas demand) or wind variables (compensa-
tion of unstable electricity production in wind power plants).
The temperature variable is considered as an input variable
– with both delayed and accelerated values – showing that
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the user also relies on the weather forecast when defining
gas flow nominations.

For users with basic models an additional input
variable (representing constraints or individual indepen-
dence) improves model performance, thus for user 2
LIMIT_EXIT_MAX_QN, LIMIT_ENTRY_MAX_QN variables
improved the model, revealing that the user is constrained
by factors signed in the contract and for user 4 the week_nb
input variable showed user dependency on the current year
season. For user 1 the CO2 emission process factor im-
proved the model (based on temperature, wind and lim-
its inputs), which might represent user operation area, i.e.,
energy and heat supply. A great distinction between ba-
sic and advanced models is apparent with user 3, where
macro-economic data like gas process, CO2 emission pro-
cess, historical prices for Oil India Limited all improved model
accuracy. User 3 is the only user among those analyzed
where the Linear regression based model enjoys better ac-
curacy than the Artificial Neural Network-based models. All
user auto regression did not make a significant improve-
ment. The Artificial Neural Network enjoys better perfor-
mance due to users’ dependency on non-linear variables,
such as LIMIT_EXIT_MAX_QN or week_nb.

The models developed are intended to be used as support
for facility operation decisions and for optimization of product
portfolios.
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