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Abstract

It is difficult to diagnose a three-phase matrix converter using a mathematical model, because a matrix converter consists of
nine switches with various nonlinear factors. Since a neural network does not require any mathematical system model, it is
a suitable technique for fault classification in matrix converters. In this manuscript, a fault diagnostic system for three-phase
to three-phase matrix converters using a neural network is proposed to detect a fault and identify its location. The proposed
diagnostic system can detect faults using just one phase current waveform which is very efficient in terms of cost of sensors
and system complexity. This method was evaluated using simulation and experimental data sets in two scenarios. The results
confirm that in different normal and abnormal situations the system achieves performance levels in excess of 98%.
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Introduction

Compared to conventional AC/AC converters, the matrix
converter (MC) is a power converter with numerous advanta-
geous features, such as sinusoidal input or output currents,
bi-directional power flow, four-quadrant operation, alterable
power factor, no DC-link components and high power den-
sity [1, 2]. On account of these points of interest, MCs have
been employed in various industrial fields, such as electric
vehicles, aircraft, and other systems with exceptional de-
mands for high temperature operation as well as space and
weight savings [3]. Also, it is important for MCs to continue
stable operation even after faults occur [4]. There are two
types of faults in MC systems: open circuit and short circuit
fault of power switches. For protection, a fast fuse is always
placed in series with each switch. Therefore, short circuit
faults will change into open circuit faults soon after the fault
occurs. For greater reliability, fault diagnosis and fault toler-
ant capabilities are required for the MC [5–7]. In relation to
this particular converter, some papers have been published
on topics such as modulation strategies and topologies [8–
13]. However, less effort has been devoted to fault diagnosis
and fault tolerant strategies.

Fault tolerant configurations are the default technique to
increase the reliability of power electronic systems [14]. All
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the methods proposed in the literature in this regard can
be categorized into two main solutions. In the first solution
some extra components are utilized in the MC topology to
reconfigure the faulty switches [15–18]. Cost, complexity
and feasibility are the main drawbacks of the first solution.
The second solution tries to modify the modulation strategy
to control the remaining switches. For example, in [19] a
fault tolerant space vector modulation (SVM) is proposed in
which non-synthesizable vectors are replaced with synthe-
sizable ones. All fault tolerant solutions are based on fault
detection techniques. In other words, first a fault detection
technique should identify the fault and the exact location of
the faulty switch, and then the fault tolerant solutions would
help with continuing the operation of the MC. In the litera-
ture, two major solutions have been proposed for detection
and locating the open switch fault in MC. The first approach
is signal processing based. In [20] discrete wavelet trans-
form is employed to analyze the measured output current
waveform to detect faults. However, the method is very com-
plex and time consuming. The second approach is analyt-
ical based. Differences between the measured and refer-
ence line-to-line voltages can be used as the criterion for
diagnosis purposes [15, 21–23]. This method will increase
the system cost, since it requires voltage sensors on both
sides of the MC. In [16] faulty switch identification is done
using clamp and load currents, and a current sensor is re-
quired to measure the clamp current. In [24] a two-stage
method is proposed in which the exact location of the fault is
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determined by inspecting the load current. In [25] the load
currents, duty-cycles of the switches, and the angles of the
input and output voltages are used to help identify the fault.
Artificial intelligence (AI)-based techniques can be utilized
for fault diagnosis and condition monitoring. AI-based fault
detection methods may have several benefits. For instance,
there is no need to create a mathematical model of the sys-
tem, just a data set of the system or even expert knowledge
would suffice [26]. Various AI-based diagnosis systems have
been proposed in the literature [27]. In [28] fast Fourier trans-
form (FFT) and neural network (NN) are utilized to diagnose
electrical machine faults. In [29] a fuzzy neural network is de-
veloped to diagnose faults of rotary machines. Some studies
demonstrate that NNs can be used for system identification
and fault detection [30].

The main contribution of this paper is to diagnose the
fault location in a MC using current waveform of just one
phase. Since there are nine switches in an MC, it is diffi-
cult to diagnose faults using mathematical models. Here, the
NN method, which does not require a system model, has
been employed to detect open switch fault. As will be dis-
cussed later in this paper, since the features extracted from
the waveforms are very distinguishable, it is not necessary to
use very accurate mathematical methods to be sure about
the method output. The rest of the paper is organized in
four sections. In the system description section, the overall
system is described and the configuration of the diagnostic
system is detailed. Then it goes on to discuss the feature
extraction subsystem, which provides data for training NN.
Experimental data set gathering for training of the NN is de-
tailed. In the third section, a fault diagnostic system based
on NN is described and various steps for training of NN are
set out. Finally, in the results section the method is evaluated
and the conclusion is presented.

System Description

Configuration of Fault Diagnostic System

The configuration of a fault diagnostic system is shown in
Fig. 1. There are four major parts in the system, feature
extraction, NN classification, fault diagnosis, and switching
controller. The first three parts are the main focus of this pa-
per. The feature extraction sub-system performs the trans-
formation of output voltage and rated signals values, and the
output of the sub-system is transferred to the NN classifica-
tion. The NN are trained with both normal and abnormal data
for the MC, and the output of the NN would be ‘0’ and ‘1’ as
binary code. The binary code is decoded by a fault diagnosis
sub-system to identify the fault and its location.

Feature Extraction Sub-system

As mentioned earlier, the development of NN requires
some data and the feature extraction sub-system generates
the required data from the system waveforms. As shown
in Fig. 1, the load of the MC is inductive and the switching

Figure 1: Configuration of the proposed fault diagnostic system

Figure 2: Simulation results of current waveform of phase “A” when the
faulty switch is in phase “a” (S 1 to S 3 positions, respectively)

Figure 3: Simulation results of current waveform of phase “A” when the
open switch is in phase “b” (S 4 to S 6 positions, respectively)

Figure 4: Simulation results of current waveform of phase “A ” when the fault
occurred in switches in phase “c” (S 7 to S 9 positions, respectively)

strategy is SVM. In Fig. 2, Fig. 3, and Fig. 4 current wave-
forms of phase A if the open switch fault occurs in phase a, b,
and c are shown, respectively. In each figure, there are three
sub-figures which present waveforms of different switches on
each input phase. One can observe that all faults in different
cases could be visually distinguishable, but the computation
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unit cannot directly visualize as a human does. Therefore, a
signal transformation technique is required. The feature ex-
traction sub-system should provide the NN with sufficient im-
portant details of the pattern to make NN performance highly
accurate. One efficient technique that can be implemented
in digital signal processors (DSP) is FFT. The FFT technique
is faster than other algorithms such as Hartley and wavelet,
making it a more convenient method for an on-line fault diag-
nostic system. The FFT method is employed in this research
for feature extraction. According to Fourier theory, a series
of various sinusoidal frequencies can express any repetitive
waveform.

Suppose is (t) is sampled as N discrete points using the
sampling rate fs, i.e. the truncation interval T = N/ fs (sec-
ond). The sampling process is done by a DSP, and the con-
tinuous signal is (t) is converted to a discrete signal is [n].
This can be transformed by discrete Fourier transform (DFT)
into the following equation.

Is[k] =
1
N
·

N−1∑
n=0

is[n]Wkn
N (1)

where Is [k] represents the discrete Fourier transform
of is [n] at frequency fk. i.e. fk = k/T , and WN = exp( j2π/N).

Figure 5: Transformed current waveforms of phase A, when faulty switch is
in phase a (S 1 to S 3 positions, respectively)

Figure 6: Transformed current waveforms of phase A, when faulty switch is
in phase b (S 4 to S 6 positions, respectively)

Figure 7: Transformed current waveforms of phase A, when opened switch
is phase c (S 7 to S 9 positions, respectively)

In Fig. 5, FFT has been employed to transform current
waveforms if different switches in phase a are opened. A
similar procedure is utilized for phases b and c, as illustrated
in Fig. 6 and Fig. 7. It is clear that the transformed waveforms
are different and more mathematically distinguishable.

Experimental setup

Figure 8: Gate switching signal for switch S 1

A three-phase to three-phase matrix converter with SVM
switching controller is implemented using 600 V, 80 A MOS-
FETs. A PIC microcontroller is utilized to calculate and gen-
erate the gate signals. The SVM gate switching signals gen-
erated by the microcontroller, as shown in Fig. 8. The faults
are produced manually by removing the switch in the desired
location. All measured data are captured using a Tektronix
oscilloscope, but the sampling rate is reduced to 500 kHz.
Then the waveform’s features are extracted using FFT and,
finally, the features are transferred to NN as the input.

Figure 9: Experimental results of current waveform of phase “A ”, when faulty
switch is in S 1 to S 3 positions (phase “a”), respectively

Figure 10: Experimental results of current waveform of phase “A”, when
faulty switch is in S 4 to S 6 positions (phase “b”), respectively

Fig. 9 illustrates experimentally captured current wave-
forms of phase A when open switch fault occurs in different
switches on phase a. Fig. 10 and Fig. 11 show the same
waveform with different fault locations in phases b and c. As
can be seen, the experimental results (Fig. 9 to Fig. 11) are
similar to the results of the simulations (Fig. 2 to Fig. 4). It is
obvious that the fault at different locations could be identified
visually. If you can see the fault visually, the NN could per-
form the classification, too. As mentioned before, NN does
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Figure 11: Experimental results of current waveform of phase “A”, when
faulty switch is in S 7 to S 9 position (phase “c”), respectively

Figure 12: Transformed waveform of phase “A”, when faulty switch is in S 1
to S 3 positions (phase “a”), respectively

Figure 13: Transformed waveform of phase “A”, when faulty switch is in S 4
to S 6 position (phase “b”), respectively

Figure 14: Transformed waveform of phase “A”, when faulty switch is in S 7
to S 9 position (phase “c”), respectively

not require a model of the system. Moreover, classification
using the NN technique provides the system with other ben-
efits. If one of the input neurons fails, the NN is still able to
identify the fault using the other neurons. In contrast, a small
change in the system or a sensor failure would cause the
diagnosis system to fail. Here, the NN will be trained with
data of different conditions, including different loads, there-
fore changes in the system will not cause any issue. Fig. 12
shows the transformed waveforms of the currents of phase A
shown in Fig. 9. The transformed signals are similar to the
results of the simulations, as was expected. Corresponding
transformed waveforms for other phases are shown in Fig. 13
and Fig. 14.

In Fig. 5 and Fig. 12 the transformed signals of both ex-
perimental and simulation of phase a are illustrated, respec-
tively. It is obvious that the results have nearly identical
fault features, and the FFT technique efficiently identified the
faulty and normal conditions. In each situation harmonic or-
ders have different amplitudes. This confirms that the FFT is
an efficient technique to classify normal and abnormal con-

ditions.

Neural Network Fault Classification Approach

As mentioned earlier, all the features extracted can be
classified by their effects on the waveform. Normally, sys-
tematic mathematical techniques are difficult to implement in
real time control systems. Therefore, in a feedforward NN in
which input/output mapping is permitted NN will be utilized.
Also, the non-linear relationship between nodes can be con-
sidered. The real nature of the NN is to classify and general-
ize, this is why it can distinguish uncharacteristic conditions.
Sensitivity and response time of the algorithm are suitable
for on-line fault diagnosis. In the following different parts of
the NN fault diagnosis methods are described.

Design of Neural Network

Figure 15: Architecture of the proposed fault diagnosis NN

Because of the input data characteristics, a multilayer
feedforward NN is employed in this manuscript. The NN
network has 15 input nodes representing a magnitude of
each harmonic order. Also, the NN has one hidden layer
with 4 nodes and one output node. It should be mentioned
that the number of NN nodes varies for different applications.
Therefore, the selection of dimensions of different layers in
NN is based on the preferred level of accuracy. The tansig
is used as the sigmoid activation function for hidden nodes
and the output node. The proposed architecture of the fault
diagnosis NN is shown in Fig. 15.

Input/output Data

As mentioned earlier, the NN should be trained with a
set of data. This data should contain normal and abnor-
mal conditions. A forty set of normal data and a forty set
of abnormal data for each switch is employed to train the
NN, thus the size of the input matrix is 400 input data rows
with 15 columns, [400 × 15] and the size of the output target
is [400 × 1]. The output target relegates the number of faulty
switches. Since the test data sets should consist of various
operating regions, they are generated in different operating
points. Data sets are sampled at 500 kHz and transformed
by FFT to a set of 0 to 14 harmonics orders. To avoid satura-
tion of sigmoidal units, the input training data sets are scaled
by using the mean center and unit variance method.
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Table 1: Confusion table for testing in the same operating points as the NN was trained

Actual Data

Normal S1 S2 S3 S4 S5 S6 S7 S9 S9

C
la

ss
ifi

ca
tio

n
Ta

rg
et

Normal 99.70% 0.0280% 0.0063% 0.0540% 0.0400% 0.0089% 0.0352% 0.0322% 0.0752% 0.0195%

S1 0.0678% 99.23% 0.1260% 0.1005% 0.1240% 0.0300% 0.1044% 0.0153% 0.1276% 0.0744%

S2 0.1768% 0.0352% 99.02% 0.0024% 0.1336% 0.1847% 0.0604% 0.1540% 0.1206% 0.1122%

S3 0.0229% 0.0033% 0.0249% 99.83% 0.0241% 0.0014% 0.0054% 0.0501% 0.0158% 0.0220%

S4 0.0803% 0.1122% 0.0354% 0.3279% 98.91% 0.0108% 0.0812% 0.1816% 0.2161% 0.0447%

S5 0.1517% 0.0948% 0.0008% 0.1412% 0.1535% 99.14% 0.0203% 0.0915% 0.0969% 0.1093%

S6 0.0117% 0.2003% 0.0831% 0.1357% 0.2444% 0.0042% 98.97% 0.0429% 0.0789% 0.2287%

S7 0.0547% 0.1741% 0.0850% 0.1046% 0.0875% 0.0326% 0.1522% 99.02% 0.0871% 0.2022%

S8 0.0616% 0.0378% 0.0664% 0.1072% 0.0772% 0.0575% 0.0944% 0.0012% 99.40% 0.0967%

S9 0.0404% 0.0133% 0.0102% 0.0894% 0.0526% 0.1135% 0.0190% 0.0128% 0.0488% 99.6%

Table 2: Confusion table for a different operating point

Actual Data

Normal S1 S2 S3 S4 S5 S6 S7 S8 S9

C
la

ss
ifi

ca
tio

n
Ta

rg
et

Normal 98.52% 0.2514% 0.2573% 0.1799% 0.0487% 0.0444% 0.2278% 0.2366% 0.2307% 0.0032%

S1 0.4632% 95.60% 0.7411% 0.2972% 0.0303% 0.5579% 0.5483% 0.3445% 0.6620% 0.7554%

S2 0.0482% 0.5649% 96.53% 0.4404% 0.7446% 0.5019% 0.2211% 0.4447% 0.3670% 0.1372%

S3 0.2549% 0.1092% 0.3128% 97.43% 0.3156% 0.3261% 0.2253% 0.0306% 0.5311% 0.4646%

S4 0.7753% 0.7738% 0.7317% 0.8400% 93.07% 0.5413% 0.4597% 0.6996% 1.1143% 0.9943%

S5 0.9227% 0.4337% 0.6125% 0.7909% 0.7503% 94.11% 0.7064% 0.8777% 0.7561% 0.0395%

S6 0.2311% 0.4512% 0.1608% 0.1399% 0.4435% 0.1712% 97.80% 0.1267% 0.3387% 0.1370%

S7 0.3918% 0.0197% 0.2118% 0.3818% 0.3079% 0.2849% 0.1142% 97.25% 0.3772% 0.6607%

S8 0.0988% 0.8599% 0.9237% 0.0342% 1.2912% 0.4714% 0.3344% 1.1648% 94.64% 0.1817%

S9 0.5754% 0.1009% 0.5943% 0.1716% 0.4781% 0.4097% 0.3698% 0.3634% 0.8668% 96.07%

Neural Network Training
The Levenberg Marquardt algorithm is used to train the

NN; it requires more memory but less time. This method has
intrinsic regularization properties, which adds constraints to
make the results more consistent. The NN training is accom-
plished when generalization stops improving, as indicated by
variations in the mean square error of the validation samples.
For calculation of the sum of square error (SSE), misclassi-
fication and input data error rate are chosen. Using the fol-
lowing equation SSE can be calculated as 0.05.

S S E =

√√√
1
N
·

N∑
i=1

L∑
j=1

(yi j − di j)2 (2)

where yi j is output of the NN, di j is output of training
data, N is number of training data, and L is number of units
in the output layer.

Fault Classification Results

To evaluate the proposed method, two different scenarios
are considered. In the first scenario, the method is evaluated
using data sets gathered from the system in the same oper-
ating points where the NN was trained. In Table 1 the testing
data along with the tested results are tabulated. The error

between the actual value and the target data should be less
than the SSE goal. Therefore, according to Table 1 it is con-
firmed that the training process is complete. Performance of
the NN classification is evidently more than 98.9%. Thus,
when the operating point is same as in the trained data sets,
the NN could properly identify the faults in different switches.

In the second scenario, a new operating point is consid-
ered so as to test the trained NN. This new operating point is
established by changing the load values in the training data
load range. Ideally, the diagnostic system should have good
performance in terms of identifying the faults for a wide range
of the operating point. The results are tabulated in Table 2.
In this scenario, the classification performance between nor-
mal and abnormal is more than 98%, which is very impres-
sive. Also, the classification performance in different fault
locations is about 93%. The NN classification performance
for fault identification is very good. However, the NN could be
trained using a larger data set to make the fault classifying
results more accurate. While the results are relatively ac-
curate, better results might be achieved by employing other
feature extraction methods.
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Conclusion

This paper proposes a fault diagnostic system for matrix
converters using a neural network. A feature extraction sub-
system based on the FFT technique is utilized to transform
output waveforms. The transformed waveforms are used as
NN inputs. The FFT method has advantages in the form of
fast computation and ready implementation in most digital
signal processing microchips and microcontrollers. Finding
an efficient method for the feature extraction subsystem is a
challenge. The proposed diagnosis system is adept at iden-
tifying a fault and its location. The proposed method is eval-
uated using simulation and experimental data in two differ-
ent scenarios. The classification performance is in excess of
98%. The evaluations confirm the accuracy of the proposed
method in detecting and locating the faulty switch.
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