The investigation of cathode layer of Molten Carbonate Fuel Cell manufactured by using printing techniques

Jaroslaw Milewski, Arkadiusz Sienko, Tomasz Wejrzanowski, Armen Jaworski, Lukasz Szablowski, Karol Cwieka, Artur Olszewski, Arkadiusz Szczesniak, Jakub Skibinski, Olaf Dybinski


The paper presents an investigation into the three cathode layers for the Molten Carbonate Fuel Cell that were obtained by
using printing techniques on various surfaces. The main differences during the manufacturing process were the substrates
used when printing the layers: glass and two different sorts of paper. The cathodes were investigated at the theoretical and
experimental level. To identify the influence of the substrate used we built a mathematical model of the fuel cell, in which the
influence is expressed by the conductivity of the layer. The paper demonstrates the possibility of using printing techniques to
manufacture Molten Carbonate Fuel Cell layers.

Full Text:



R. Roshandel, F. Golzar, M. Astaneh, Technical economic and environmental

optimization of combined heat and power systems based

on solid oxide fuel cell for a greenhouse case study, Energy Conversion

and Management 164 (2018) 144–156.

J. Yan, F. Sun, S. Chou, U. Desideri, H. Li, P. Campana, R. Xiong,

Transformative innovations for a sustainable future – Part III, Applied

Energy 227 (2018) 1–6.

J. Kotowicz, Ł. Bartela, K. Dubiel-Jurga´s, Analysis of Energy Storage

System with Distributed Hydrogen Production and Gas Turbine,

Archives of Thermodynamics 38 (4) (2017) 65–87.

J. G. G. Clúa, R. J. Mantz, H. D. Battista, Optimal sizing of a gridassisted

wind-hydrogen system, Energy Conversion and Management

(2018) 402–408.

M. Le´sko, W. Bujalski, Modeling of District Heating Networks for the

Purpose of Operational Optimization with Thermal Energy Storage,

Archives of Thermodynamics 38 (4) (2017) 139–163.

R. Bartnik, Z. Buryn, A. Hnydiuk-Stefan, A. Juszczak, Methodology

and a Continuous Time Mathematical Model for Selecting the Optimum

Capacity of a Heat Accumulator Integrated with a CHP Plant, Energies

(5) (2018) 1240.

L. Szablowski, P. Krawczyk, K. Badyda, S. Karellas, E. Kakaras,W. Bujalski,

Energy and exergy analysis of adiabatic compressed air energy

storage system, Energy 138 (2017) 12–18.

A. Chmielewski, P. Piorkowski, K. Bogdzinski, P. Szulim, R. Guminski,

Test bench and model research of hybrid energy storage, JOURNAL

OF POWER TECHNOLOGIES 97 (5) (2017) 406–415.

J. Yu, J. Fu, F. Guo, Y. Xie, Automatic testing system to evaluate the

energy efficiency of electric storage water heaters, Measurement and

Control 51 (7-8) (2018) 223–234.

S. Fukuzumi, Y.-M. Lee, W. Nam, Fuel Production from Seawater

and Fuel Cells Using Seawater, ChemSusChem 10 (22) (2017) 4264–

Y. Chen, F. Mojica, G. Li, P.-Y. A. Chuang, Experimental study and

analytical modeling of an alkaline water electrolysis cell, International

Journal of Energy Research 41 (14) (2017) 2365–2373.

B. Hu, A. N. Aphale, C. Liang, S. J. Heo, M. A. Uddin, P. Singh,

Carbon Tolerant Double Site Doped Perovskite Cathodes for High-

Temperature Electrolysis Cells, ECS Transactions 78 (1) (2017) 3257–

S. Lepszy, T. Chmielniak, P. Monka, Storage system for electricity obtained

from wind power plants using underground hydrogen reservoir,


C. Seibel, J.-W. Kuhlmann, Dynamic Water Electrolysis in Cross-

Sectoral Processes, Chemie Ingenieur Technik 90 (10) (2018) 1430–

L. Barelli, G. Bidini, G. Cinti, Air variation in SOE: Stack experimental

study, International Journal of Hydrogen Energy 43 (26) (2018)


A. Z. Senseni, F. Meshkani, S. M. S. Fattahi, M. Rezaei, A theoretical

and experimental study of glycerol steam reforming over Rh/MgAl 2

O 4 catalysts, Energy Conversion and Management 154 (2017) 127–

Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, An integrated natural

gas power cycle using hydrogen and carbon fuel cells, Fuel 209

(2017) 76–84.

G. Leonzio, State of art and perspectives about the production of

methanol dimethyl ether and syngas by carbon dioxide hydrogenation,

Journal of CO2 Utilization 27 (2018) 326–354.

F. B. Juangsa, L. A. Prananto, Z. Mufrodi, A. Budiman, T. Oda, M. Aziz,

Highly energy-efficient combination of dehydrogenation of methylcyclohexane

and hydrogen-based power generation, Applied Energy 226

(2018) 31–38.

V. Suboti´c, B. Stoeckl, V. Lawlor, J. Strasser, H. Schroettner,

C. Hochenauer, Towards a practical tool for online monitoring of solid

oxide fuel cell operation: An experimental study and application of advanced

data analysis approaches, Applied Energy 222 (2018) 748–

A. H. Davoodi, M. R. Pishvaie, Plant-Wide Control of an Integrated

Molten Carbonate Fuel Cell Plant, Journal of Electrochemical Energy

Conversion and Storage 15 (2) (2018) 021005.

M. A. Azizi, J. Brouwer, Progress in solid oxide fuel cell-gas turbine hybrid

power systems: System design and analysis transient operation,

controls and optimization, Applied Energy 215 (2018) 237–289.

M. Recalde, T. Woudstra, P. Aravind, Renewed sanitation technology:

A highly efficient faecal-sludge gasification–solid oxide fuel cell power

plant, Applied Energy 222 (2018) 515–529.

J. Badur, M. Lema´ nski, T. Kowalczyk, P. Ziółkowski, S. Kornet, Zerodimensional

robust model of an SOFC with internal reforming for hybrid

energy cycles, Energy 158 (2018) 128–138.

P. Jienkulsawad, D. Saebea, Y. Patcharavorachot, S. Kheawhom,

A. Arpornwichanop, Analysis of a solid oxide fuel cell and a molten

carbonate fuel cell integrated system with different configurations, International

Journal of Hydrogen Energy 43 (2) (2018) 932–942.

I. Baikov, O. Smorodova, S. Kitaev, I. Yerilin, Temperature influence

on internal reforming and methane direct oxidation in solid oxide fuel

cells, Nanotechnologies in Construction: A Scientific Internet-Journal

(4) (2018) 120–137.

M. Dillig, T. Plankenbühler, J. Karl, Thermal effects of planar high temperature

heat pipes in solid oxide cell stacks operated with internal

methane reforming, Journal of Power Sources 373 (2018) 139–149.

S. Campanella, M. Bracconi, A. Donazzi, A fast regression model for

the interpretation of electrochemical impedance spectra of Intermediate

Temperature Solid Oxide Fuel Cells, Journal of Electroanalytical

Chemistry 823 (2018) 697–712.

M. Wu, H. Zhang, T. Liao, Performance assessment of an integrated

molten carbonate fuel cell-thermoelectric devices hybrid system for

combined power and cooling purposes, International Journal of Hydrogen

Energy 42 (51) (2017) 30156–30165.

W. M. Budzianowski, Assessment of Thermodynamic Efficiency of

Carbon Dioxide Separation in Capture Plants by Using Gas–Liquid

Absorption, in: Green Energy and Technology, Springer International

Publishing, 2016, pp. 13–26.

D. Bonaventura, R. Chacartegui, J. Valverde, J. Becerra, C. Ortiz,

J. Lizana, Dry carbonate process for CO 2 capture and storage: Integration

with solar thermal power, Renewable and Sustainable Energy

Reviews 82 (2018) 1796–1812.

R. Carapellucci, R. Cipollone, D. D. Battista, Modeling and characterization

of molten carbonate fuel cell for electricity generation and

carbon dioxide capture, Energy Procedia 126 (2017) 477–484.

S. K. Das, Towards enhancement of carbon capture by Molten Carbonate

Fuel Cell through controlled thermodiffusion, International Journal

of Heat and Mass Transfer 127 (2018) 296–302.

Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, A power cycle of

natural gas decarbonization and dual fuel cells with inherent 100% carbon

capture, International Journal of Hydrogen Energy 43 (39) (2018)


J. P. Perez-Trujillo, F. Elizalde-Blancas, M. D. Pietra, S. J. McPhail, A

numerical and experimental comparison of a single reversible molten

carbonate cell operating in fuel cell mode and electrolysis mode, Applied

Energy 226 (2018) 1037–1055.

P. Fragiacomo, G. D. Lorenzo, O. Corigliano, Performance Analysis

of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench

under a CO2-H2O Feed Stream, Energies 11 (9) (2018) 2276.

and, Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks

Power Generation System, Energies 10 (12) (2017) 2103.

J. Kupecki, K. Motyli ´ nski, M. Skrzypkiewicz, M. Wierzbicki, Y. Naumovich,

Preliminary Electrochemical Characterization of Anode Supported

Solid Oxide Cell (AS-SOC) Produced in the Institute of Power

Engineering Operated in Electrolysis Mode (SOEC), Archives of Thermodynamics

(4) (2017) 53–63.

Y. Zheng, Y. Luo, Y. Shi, N. Cai, Dynamic Processes of Mode Switching

in Reversible Solid Oxide Fuel Cells, Journal of Energy Engineering

(6) (2017) 04017057.

O. Siddiqui, I. Dincer, Analysis and performance assessment of a new

solar-based multigeneration system integrated with ammonia fuel cell

and solid oxide fuel cell-gas turbine combined cycle, Journal of Power

Sources 370 (2017) 138–154.

N. Danilov, A. Tarutin, J. Lyagaeva, E. Pikalova, A. Murashkina,

D. Medvedev, M. Patrakeev, A. Demin, Affinity of YBaCo 4 O 7+ -

based layered cobaltites with protonic conductors of cerate-zirconate

family, Ceramics International 43 (17) (2017) 15418–15423.

M. L. Ferrari, A. Sorce, A. F. Massardo, Hardware-in-the-Loop Operations

With an Emulator Rig for SOFC Hybrid Systems, in: Volume

: Coal Biomass and Alternative Fuels, Cycle Innovations, Electric

Power, Industrial and Cogeneration Applications, Organic Rankine Cycle

Power Systems, ASME, 2017.

K. Motylinski, Y. Naumovich, Numerical model for evaluation of the

effects of carbon deposition on the performance of 1 kW SOFC stack

– a proposal, E3S Web of Conferences 14 (2017) 01043.

R. Ma, C. Liu, E. Breaz, P. Briois, F. Gao, Numerical stiffness study of

multi-physical solid oxide fuel cell model for real-time simulation applications,

Applied Energy 226 (2018) 570–581.

Z. Ye, X. Zhang, W. Li, G. Su, J. Chen, Optimum operation states

and parametric selection criteria of a high temperature fuel cellthermoradiative

cell system, Energy Conversion and Management 173

(2018) 470–475.

G. Accardo, D. Frattini, S. P. Yoon, H. C. Ham, S.W. Nam, Performance

and properties of anodes reinforced with metal oxide nanoparticles for

molten carbonate fuel cells, Journal of Power Sources 370 (2017) 52–

M. E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison

of anode-supported cathode-supported, and electrolyte-supported

SOFCs, International Journal of Hydrogen Energy 43 (32) (2018)


T. A. Prokop, K. Berent, H. Iwai, J. S. Szmyd, G. Brus, A threedimensional

heterogeneity analysis of electrochemical energy conversion

in SOFC anodes using electron nanotomography and mathematical

modeling, International Journal of Hydrogen Energy 43 (21) (2018)


A. M. Abdalla, S. Hossain, A. T. Azad, P. M. I. Petra, F. Begum, S. G.

Eriksson, A. K. Azad, Nanomaterials for solid oxide fuel cells: A review,

Renewable and Sustainable Energy Reviews 82 (2018) 353–368.

K. Dzierzgowski, S. Wachowski, W. Gojtowska, I. Lewandowska,

P. Jasi ´ nski, M. Gazda, A. Mielewczyk-Gry´ n, Praseodymium substituted

lanthanum orthoniobate: Electrical and structural properties, Ceramics

International 44 (7) (2018) 8210–8215.

L. J. M. J. Blomen, M. N. Mugerwa (Eds.), Fuel Cell Systems, Springer

US, 1993.

F. RodrÍguez, P. Sebastian, O. Solorza, R. PÉrez, Mo–Ru–W chalcogenide

electrodes prepared by chemical synthesis and screen printing

for fuel cell applications, International Journal of Hydrogen Energy

(11) (1998) 1031–1035.

A. D. Taylor, E. Y. Kim, V. P. Humes, J. Kizuka, L. T. Thompson, Inkjet

printing of carbon supported platinum 3-D catalyst layers for use in fuel

cells, Journal of Power Sources 171 (1) (2007) 101–106.

N. P. Kulkarni, Design and development of manufacturing methods for

manufacturing of PEM fuel cell MEA’s.

M. R. Somalu, N. P. Brandon, Rheological Studies of Nickel/Scandia-

Stabilized-Zirconia Screen Printing Inks for Solid Oxide Fuel Cell Anode

Fabrication, Journal of the American Ceramic Society 95 (4)

(2011) 1220–1228.

M. Somalu, V. Yufit, I. Shapiro, P. Xiao, N. Brandon, The impact of ink

rheology on the properties of screen-printed solid oxide fuel cell anodes,

International Journal of Hydrogen Energy 38 (16) (2013) 6789–

R. Baumann, A. Willert, F. Siegel, A. Kohl, Method for producing catalyst

layers for fuel cells, uS Patent App. 13/322,472 (may 24 2012).

W.Wang, S. Chen, J. Li, W.Wang, Fabrication of catalyst coated membrane

with screen printing method in a proton exchange membrane

fuel cell, International Journal of Hydrogen Energy 40 (13) (2015)


M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, Screenprinting

inks for the fabrication of solid oxide fuel cell films: A review,

Renewable and Sustainable Energy Reviews 75 (2017) 426–439.

A. Jayakumar, S. Singamneni, M. Ramos, A. Al-Jumaily, S. Pethaiah,

Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel

D Printing Technique and Critical Assessment of the Challenges Encountered,

Materials 10 (7) (2017) 796.

A. Nadar, A. M. Banerjee, M. Pai, R. Pai, S. S. Meena, R. Tewari,

A. Tripathi, Catalytic properties of dispersed iron oxides Fe2O3/MO2

(M = Zr Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of

support, International Journal of Hydrogen Energy 43 (1) (2018) 37–

E. Arato, E. Audasso, L. Barelli, B. Bosio, G. Discepoli, Kinetic modelling

of molten carbonate fuel cells: Effects of cathode water and electrode

materials, Journal of Power Sources 330 (2016) 18–27.

M. Peksen, Safe heating-up of a full scale SOFC system using 3D

multiphysics modelling optimisation, International Journal of Hydrogen

Energy 43 (1) (2018) 354–362.

E. El-Hay, M. El-Hameed, A. El-Fergany, Steady-state and dynamic

models of solid oxide fuel cells based on Satin Bowerbird Optimizer, International

Journal of Hydrogen Energy 43 (31) (2018) 14751–14761.

J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model

of Molten Carbonate Fuel Cell: A proposal, International Journal of

Hydrogen Energy 38 (26) (2013) 11565–11575.

M. Ławry´nczuk, Towards Reduced-Order Models of Solid Oxide Fuel

Cell, Complexity 2018 (2018) 1–18.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, Fabrication

of bulk heterojunction plastic solar cells by screen printing, Applied

Physics Letters 79 (18) (2001) 2996–2998.


  • There are currently no refbacks.