Integrated anaerobic digestion and gasification processes for upgrade of ethanol biorefinery residues

Rafael Nogueira Nakashima, Daniel Flórez-Orrego, Silvio de Oliveira Junior


The upgrading of the biorefineries residues is a possible way to increase the overall process efficiency while attaining economical
revenues from wastes that otherwise would be discarded. In this sense, anaerobic digestion and gasification represent
interesting alternatives to convert organic residues into biofuels, electricity or other bioproducts. However, few studies have
explored energy integration possibilities between those options or evaluated various final product pathways. Thus, in this
work, various scenarios aimed at capitalizing the main residues of the sugarcane ethanol industry (vinasse and bagasse)
are investigated. Two process layouts combining anaerobic digestion and gasification are proposed for each desired product
(methane, hydrogen or power). The highest exergy efficiency (48%) was obtained for the configuration focused on methane
production and using a combined cycle, since it requires fewer resources and separation steps to convert feedstock into exportable
products. On the other hand, exergy was primarily destroyed in vinasse disposal, since a significant fraction of its
organic wastes are inert to anaerobic digestion, followed by the bagasse gasifier and utility systems, due to the irreversible
reactions occurring in these processes. In short, this study points to some improvement opportunities and reinforces the
advantages of the waste capitalization concept.


biogas; gasification; exergy; anaerobic digestion; energy integration

Full Text:



International Energy Agency (IEA), Renewables information: Overview

, IEA Statistics, 2017.

Brazilian Energy Research Company (EPE), Brazilian Energy Balance

year 2016, EPE, Rio de Janeiro, RJ, Brazil, 2017.

National Water Agency of Brazil (ANA), Handbook of water conservation

and reuse in the sugarcane industry (In portuguese), ANA; FIESP;

UNICA; CTC, 2009.

R. N. Nakashima, S. de Oliveira Junior, Exergy assessment of vinasse

disposal alternatives : concentration , anaerobic digestion and fertirrigation,

in: 31st International Conference on Efficiency, Cost, Optimization,

Simulation and Environmental Impact on Energy Systems ECOS,

, p. 15.

L. F. Pellegrini, S. de Oliveira, Exergy analysis of sugarcane

bagasse gasification, Energy 32 (4) (2007) 314–327.


W. M. Budzianowski, Low-carbon power generation cycles: the feasibility

of co2 capture and opportunities for integration, Journal of Power

Technologies 91 (1) (2011) 6–13.

R. Palacios-Bereche, K. J. Mosqueira-Salazar, M. Modesto, A. V. Ensinas,

S. A. Nebra, L. M. Serra, M. A. Lozano, Exergetic analysis of the

integrated first- and second-generation ethanol production from sugarcane,

Energy 62 (2013) 46–61. doi:10.1016/

G. Allesina, S. Pedrazzi, L. Guidetti, P. Tartarini, Modeling of

coupling gasification and anaerobic digestion processes for maize

bioenergy conversion, Biomass and Bioenergy 81 (2015) 444–451.


M. Gassner, F. Maréchal, Thermo-economic process model for thermochemical

production of Synthetic Natural Gas (SNG) from lignocellulosic

biomass, Biomass and Bioenergy 33 (11) (2009) 1587–1604.


L. Tock, F. Maréchal, Co-production of hydrogen and electricity

from lignocellulosic biomass: Process design and

thermo-economic optimization, Energy 45 (1) (2012) 339–349.


E. L. Barrera, E. Rosa, H. Spanjers, O. Romero, S. De Meester,

J. Dewulf, A comparative assessment of anaerobic digestion power

plants as alternative to lagoons for vinasse treatment: Life cycle assessment

and exergy analysis, Journal of Cleaner Production 113

(2016) 459–471. doi:10.1016/j.jclepro.2015.11.095.

R. M. Leme, J. E. Seabra, Technical-economic assessment of different

biogas upgrading routes from vinasse anaerobic digestion

in the Brazilian bioethanol industry, Energy 119 (2017) 754–766.


D. Flórez-Orrego, J. A. M. da Silva, H. Velásquez, S. de Oliveira, Renewable

and non-renewable exergy costs and CO2 emissions in the

production of fuels for Brazilian transportation sector, Energy 88 (2015)

–36. doi:10.1016/

E. L. Barrera, H. Spanjers, O. Romero, E. Rosa, J. Dewulf, Characterization

of the sulfate reduction process in the anaerobic digestion

of a very high strength and sulfate rich vinasse, Chemical Engineering

Journal 248 (2014) 383–393. doi:10.1016/j.cej.2014.03.057.

A. C. Wilkie, K. J. Riedesel, J. M. Owens, Stillage characterization

and anaerobic treatment of ethanol stillage from conventional and

cellulosic feedstocks, Biomass and Bioenergy 19 (2) (2000) 63–102.


A. Carrara, A. Perdichizzi, G. Barigozzi, Simulation of an hydrogen production

steam reforming industrial plant for energetic performance prediction,

International Journal of Hydrogen Energy 35 (8) (2010) 3499–


D. Flórez-Orrego, S. de Oliveira Junior, On the efficiency, exergy

costs and CO2 emission cost allocation for an integrated syngas

and ammonia production plant, Energy 117 (2016) 341–360.


P. Basu, Biomass Gasification and Pyrolysis, Elsevier, 2010.


J. Andersson, J. Lundgren, Techno-economic analysis of ammonia

production via integrated biomass gasification, Applied Energy 130

(2014) 484–490. doi:10.1016/j.apenergy.2014.02.029.

Y. C. Ardila, J. E. J. Figueroa, B. H. Lunelli, R. M. Filho, M. R. Wolf

Maciel, Syngas production from sugar cane bagasse in a circulating

fluidized bed gasifier using Aspen Plus: Modelling and Simulation,

Computer Aided Chemical Engineering 30 (2012) 1093–1097.


C. M. Kinchin, R. L. Bain, Hydrogen Production from Biomass via Indirect

Gasification : The Impact of NREL Process Development Unit

Gasifier Correlations (2009).

Haldor Topsøe, From solid fuels to substitute natural gas (SNG) using

TREMP Topsøe Recycle Energy-efficient Methanation Process, (2009).

S. Li, X. Ji, X. Zhang, L. Gao, H. Jin, Coal to SNG: Technical progress,

modeling and system optimization through exergy analysis, Applied

Energy 136 (2014) 98–109. doi:10.1016/J.APENERGY.2014.09.006.

H. H. Nguyen, Modelling of food waste digestion using ADM1 integrated

with Aspen Plus, Ph.D. thesis, University of Southampton, Faculty

of Engineering and the Environment (2014).

I. D. C. Macedo, M. R. L. V. Leal, J. E. A. R. Silva, Greenhouse gases

emissions of the ethanol use in Brazil (In portuguese), Deparment of

Environment, São Paulo State Government, 2004.

A. Elia Neto, Vinasse state of the art (In portuguese), UNICA, Piracicaba,

SP, Brazil, 2016.

D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G.

Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, V. A. Vavilin,

Anaerobic digestion model no. 1 (ADM1), IWA task group for mathematical

modelling of anaerobic digestion processes, IWA Publishing,

London, UK, 2002.

E. L. Barrera, H. Spanjers, K. Solon, Y. Amerlinck, I. Nopens, J. Dewulf,

Modeling the anaerobic digestion of cane-molasses vinasse: Extension

of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction

for a very high strength and sulfate rich wastewater, Water

Research 71 (2015) 42–54. doi:10.1016/j.watres.2014.12.026.

M. &. Eddy, F. L. Burton, H. D. Stensel, G. Tchobanoglous, Wastewater

engineering: treatment and reuse, McGraw Hill, 2003.

Aspen Plus, Rate-based model of the CO2 capture process by NaOH

using Aspen Plus, Aspen Tecnology, Inc., Bedford, MA, USA, 2013.

H. Cherif, C. Coquelet, P. Stringari, D. Clodic, L. Pellegrini, S. Moioli,

S. Langé, Experimental and Simulation Results for the Removal of

H2S from Biogas by Means of Sodium Hydroxide in Structured Packed

Columns, in: ICBST 2016: 18th International Conference on Biogas

Science and Technology, 2016, p. 9.

R. P. Field, R. Brasington, Baseline flowsheet model for IGCC with carbon

capture, Industrial and Engineering Chemistry Research 50 (19)

(2011) 11306–11312. doi:10.1021/ie200288u.

M. Puig-Arnavat, J. C. Bruno, A. Coronas, Modified Thermodynamic

Equilibrium Model for Biomass Gasification: A Study of the Influence

of Operating Conditions, Energy & Fuels 26 (2) (2012) 1385–1394.


A. Duret, C. Friedli, F. Maréchal, Process design of Synthetic

Natural Gas (SNG) production using wood gasification,

Journal of Cleaner Production 13 (15) (2005) 1434–1446.


M.-J. Yoo, L. Lessard, M. Kermani, F. Maréchal, Osmoselua – an integrated

approach to energy systems integration with lcia and gis, in:

K. V. Gernaey, J. K. Huusom, R. Gani (Eds.), 12th International Symposium

on Process Systems Engineering and 25th European Symposium

on Computer Aided Process Engineering, Vol. 37 of Computer

Aided Chemical Engineering, Elsevier, 2015, pp. 587 – 592.


D. Flórez-Orrego, S. Sharma, S. D. Oliveira, F. Marechal, Combined

Exergy Analysis and Energy Integration for Design Optimization of Nitrogen

Fertilizer Plants, in: 30th International Conference on Efficiency,

Cost, Optimization, Simulation and Environmental Impact of Energy

Systems, ECOS 2017, San Diego, CA, USA, 2017.

V. Santos, R. Ely, A. Szklo, A. Magrini, Chemicals, electricity and fuels

from biorefineries processing Brazils sugarcane bagasse: Production

recipes and minimum selling prices, Renewable and Sustainable Energy

Reviews 53 (2016) 1443–1458. doi:10.1016/j.rser.2015.09.069.

D. Hotza, J. Diniz da Costa, Fuel cells development and hydrogen

production from renewable resources in Brazil, International

Journal of Hydrogen Energy 33 (19) (2008) 4915–4935.


S. Tai, K. Matsushige, T. Goda, Chemical exergy of organic matter in

wastewater, International Journal of Environmental Studies 27 (3-4)

(1986) 301–315. doi:10.1080/00207238608710299.

S. A. Channiwala, P. P. Parikh, A unified correlation for estimating

HHV of solid, liquid and gaseous fuels, Fuel 81 (8) (2002) 1051–1063.


J. Szargut, D. R. Morris, F. R. Steward, Energy analysis of thermal,

chemical, and metallurgical processes, Hemisphere Publishing, New

York, NY, 1988.

D. Flórez-Orrego, J. A. M. Silva, S. D. Oliveira, Exergy and environmental

comparison of the end use of vehicle fuels: The Brazilian

case, Energy Conversion and Management 100 (2015) 220–231.



  • There are currently no refbacks.