Effect of anode porosity on the performance of molten carbonate fuel cell

Karol Ćwieka, Samih Haj Ibrahim, Jarosław Milewski, Tomasz Wejrzanowski

Abstract


Nickel anodes, for molten carbonate fuel cell (MCFC), of various porosities were fabricated using tape casting and firing
processes. The same slurry composition but different sintering temperatures, 700 and 900°C, were used to obtain different
anode porosities. Combined experimental and computational techniques were used to study the influence of anode porosity
on the performance of molten carbonate fuels cell. The power generated by the 20.25 cm2 class MCFC single cell was
experimentally measured at 650°C in humidified hydrogen with respect to the porosity of the anodes. The computational
aspect involved the modeling of the microstructure of the sintered porous anodes which included measured size distribution
of Ni powder used and porosities of the manufactured materials. For the best performing single cell, the optimal porosity for
the nickel MCFC anode was experimentally determined to be 55%. Computations revealed that the specific surface area,
which is a determining factor in electrochemical reactions, reaches a maximum at a porosity of 52%.


Keywords


anode, porosity, microstructure, performance, MCFC, modeling and simulation

Full Text:

PDF

References


J. Brouwer, F. Jabbari, E. M. Leal, T. Orr, Analysis of a

molten carbonate fuel cell: Numerical modeling and experimental

validation, Journal of Power Sources 158 (1) (2006) 213–224.

doi:10.1016/j.jpowsour.2005.07.093.

H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical

energy storage system: A critical review, Progress in Natural Science

(3) (2009) 291–312. doi:10.1016/j.pnsc.2008.07.014.

S. M. M. Ehteshami, S. H. Chan, The role of hydrogen and

fuel cells to store renewable energy in the future energy network

- potentials and challenges, Energy Policy 73 (2014) 103–109.

doi:10.1016/j.enpol.2014.04.046.

D. Cao, Y. Sun, G. Wang, Direct carbon fuel cell: Fundamentals and

recent developments, Journal of Power Sources 167 (2) (2007) 250–

doi:10.1016/j.jpowsour.2007.02.034.

S. Campanari, P. Chiesa, G. Manzolini, CO2 capture from combined

cycles integrated with Molten Carbonate Fuel Cells, International

Journal of Greenhouse Gas Control 4 (3) (2010) 441–451.

doi:10.1016/j.ijggc.2009.11.007.

S. Campanari, P. Chiesa, G. Manzolini, A. Giannotti, F. Federici,

P. Bedont, F. Parodi, Application of MCFCs for active CO2 capture

within natural gas combined cycles, Energy Procedia 4 (2011) 1235–

doi:10.1016/j.egypro.2011.01.179.

L. Caprile, B. Passalacqua, A. Torazza, Carbon capture: Energy

wasting technologies or the MCFCs challenge?, International

Journal of Hydrogen Energy 36 (16) (2011) 10269–10277.

doi:10.1016/j.ijhydene.2010.10.028.

S. Frangini, A. Masi, Molten carbonates for advanced and sustainable

energy applications: Part I. Revisiting molten carbonate

properties from a sustainable viewpoint, International

Journal of Hydrogen Energy 41 (41) (2016) 18739–18746.

doi:10.1016/j.ijhydene.2015.12.073.

S. Frangini, A. Masi, Molten carbonates for advanced and sustainable

energy applications: Part II. Review of recent literature, International

Journal of Hydrogen Energy 41 (42) (2016) 18971–18994.

doi:10.1016/j.ijhydene.2016.08.076.

A. L. Dicks, Molten carbonate fuel cells, Current Opinion

in Solid State and Materials Science 8 (2004) 379–383.

doi:10.1016/j.cossms.2004.12.005.

A. Kulkarni, S. Giddey, Materials issues and recent developments in

molten carbonate fuel cells, Journal of Solid State Electrochemistry 16

(2012) 3123–3146. doi:10.1007/s10008-012-1771-y.

J. Molenda, J. Kupecki, R. Baron, M. Blesznowski, G. Brus,

T. Brylewski, M. Bucko, J. Chmielowiec, K. Cwieka, M. Gazda,

A. Gil, P. Jasinski, Z. Jaworski, J. Karczewski, M. Kawalec, R. Kluczowski,

M. Krauz, F. Krok, B. Lukasik, M. Malys, A. Mazur,

A. Mielewczyk-Gryn, J. Milewski, S. Molin, G. Mordarski, M. Mosialek,

K. Motylinski, E. Naumovich, P. Nowak, G. Pasciak, P. Pianko-Oprych,

D. Pomykalska, M. Rekas, A. Sciazko, K. Swierczek, J. Szmyd, S. Wachowski,

T. Wejrzanowski, W. Wrobel, K. Zagorski, W. Zajac, A. Zurawska,

Status report on high temperature fuel cells in Poland - recent

advances and achievements, International Journal of Hydrogen Energy

(7) (2017) 4366–4403. doi:10.1016/j.ijhydene.2016.12.087.

J. R. Selman, C. C. Chen, Scientific and technical maturity of molten

carbonate technology, International Journal of Hydrogen Energy

(24) (2012) 19280–19288. doi:10.1016/j.ijhydene.2012.06.016.

K. Czelej, K. Cwieka, K. J. Kurzydlowski, CO2 stability on the Ni lowindex

surfaces: Van derWaals corrected DFT analysis, Catalysis Communications

(2016) 33–38. doi:10.1016/j.catcom.2016.03.017.

K. Czelej, K. Cwieka, T. Wejrzanowski, P. Spiewak, K. J. Kurzydlowski,

Decomposition of activated CO2 species on Ni(110): Role of surface

diffusion in the reaction mechanism, Catalysis Communications 74

(2016) 65–70. doi:10.1016/j.catcom.2015.10.034.

C.-G. Lee, J.-Y. Hwang, S.-Y. Lee, M. Oh, D.-H. Kim, H.-C. Lim, Effect

of anode area on the cell performance in a molten carbonate fuel

cell, Journal of The Electrochemical Society 155 (2) (2008) 138–143.

doi:10.1149/1.2815573.

C.-W. Lee, M. Lee, M.-J. Lee, S.-C. Chang, S.-P. Yoon, H. C. Ham,

J. Han, Effect of the flow directions on a 100cm2 MCFC single cell

with internal flow channels, International Journal of Hydrogen Energy

(2016) 1–14doi:10.1016/j.ijhydene.2016.03.188.

M. Cassir, S. J. McPhail, A. Moreno, Strategies and new developments

in the field of molten carbonates and high-temperature fuel cells in the

carbon cycle, International Journal of Hydrogen Energy 37 (24) (2012)

–19350. doi:10.1016/j.ijhydene.2011.11.006.

D. Marra, Gas distribution inside an MCFC, International

Journal of Hydrogen Energy 33 (12) (2008) 3173–3177.

doi:10.1016/j.ijhydene.2008.03.005.

S. M. C. Ang, E. S. Fraga, N. P. Brandon, N. J. Samsatli, D. J.

Brett, Fuel cell systems optimisation - methods and strategies, International

Journal of Hydrogen Energy 36 (22) (2011) 14678–14703.

doi:10.1016/j.ijhydene.2011.08.053.

S. H. Choi, D.-N. Nyeok Park, C. W. Yoon, S.-P. P. Yoon, S. W. Nam,

S.-A. A. Hong, Y.-G. G. Shul, H. C. Ham, J. Han, A study on the electrochemical

performance of 100-cm2 class direct carbon-molten carbonate

fuel cell (DC-MCFC), International Journal of Hydrogen Energy

(15) (2015) 5144–5149. doi:10.1016/j.ijhydene.2014.12.112.

R. Bove, P. Lunghi, Experimental comparison of MCFC performance

using three different biogas types and methane, Journal of Power

Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.

R. Ciccoli, V. Cigolotti, R. Lo Presti, E. Massi, S. J. McPhail,

G. Monteleone, A. Moreno, V. Naticchioni, C. Paoletti, E. Simonetti,

F. Zaza, Molten carbonate fuel cells fed with biogas:

Combating H2S, Waste Management 30 (6) (2010) 1018–1024.

doi:10.1016/j.wasman.2010.02.022.

V. Cigolotti, S. McPhail, A. Moreno, S. P. Yoon, J. H. Han, S. W.

Nam, T. H. Lim, MCFC fed with biogas: Experimental investigation

of sulphur poisoning using impedance spectroscopy, International

Journal of Hydrogen Energy 36 (16) (2011) 10311–10318.

doi:10.1016/j.ijhydene.2010.09.100.

T. Watanabe, Y. Izaki, Y. Mugikura, H. Morita, M. Yoshikawa,

M. Kawase, F. Yoshiba, K. Asano, Applicability of molten carbonate

fuel cells to various fuels, Journal of Power Sources 160 (2) (2006)

–871. doi:10.1016/j.jpowsour.2006.06.058.

D. Seo, D. Park, S. Yoon, J. Han, I. Oh, Influence of the thin anode

geometry on the performance of molten carbonate fuel cells, Transactions

of the Korean Hydrogen and New Energy Society 22 (5) (2011)

–608.

T. Wejrzanowski, S. Haj Ibrahim, K. Cwieka, M. Loeffler, J. Milewski,

E. Zschech, C.-G. Lee, Multi-modal porous microstructure for high temperature

fuel cell application, Journal of Power Sources 373 (2018)

–94. doi:10.1016/j.jpowsour.2017.11.009.

X. Huang, G. Franchi, F. Cai, Characterization of porous bi-modal

Ni structures, Journal of Porous Materials 16 (2) (2009) 165–173.

doi:10.1007/s10934-007-9181-8.

O. Stenzel, O. Pecho, L. Holzer, M. Neumann, V. Schmidt, Predicting

effective conductivities based on geometric microstructure characteristics,

AIChE Journal 62 (5) (2016) 1834–1843. doi:10.1002/aic.15160.

G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. R.

Prestat, V. Schmidt, Stochastic 3D modeling of La0.6Sr0.4CoO3-

cathodes based on structural segmentation of FIB-SEM images,

Computational Materials Science 67 (2013) 48–62.

doi:10.1016/j.commatsci.2012.08.030.

G. Gaiselmann, M. Neumann, V. Schmidt, O. Pecho, T. Hocker,

L. Holzer, Quantitative relationships between microstructure and effective

transport properties based on virtual materials testing, AIChE

Journal 60 (6) (2014) 1983–1999. doi:10.1002/aic.14416.

M. Neumann, J. Stanˇ ek, O. M. Pecho, L. Holzer, V. Beneš,

V. Schmidt, Stochastic 3D modeling of complex three-phase

microstructures in SOFC-electrodes with completely connected

phases, Computational Materials Science 118 (2016) 353–364.

doi:10.1016/j.commatsci.2016.03.013.

S. Haj Ibrahim, M. Neumann, F. Klingner, V. Schmidt, T. Wejrzanowski,

Analysis of the 3D microstructure of tape-cast open-porous materials

via a combination of experiments and modeling, Materials & Design

(2017) 216–223. doi:10.1016/j.matdes.2017.07.058.

R. Bove, P. Lunghi, Experimental comparison of MCFC performance

using three different biogas types and methane, Journal of Power

Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.

S.-G. Hong, J. R. Selman, Wetting characteristics of carbonate melts

under MCFC operating conditions, Journal of The Electrochemical Society

(1) (2004) 77–84. doi:10.1149/1.1629094.

J. Y. Youn, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, S. A. Hong, K. Y.

Lee, Fabrication and characteristics of anode as an electrolyte reservoir

for molten carbonate fuel cell, Journal of Power Sources 157 (1)

(2006) 121–127. doi:10.1016/j.jpowsour.2005.07.068.

M. Yoshikawa, A. Bodén, M. Sparr, G. Lindbergh, Experimental determination

of effective surface area and conductivities in the porous

anode of molten carbonate fuel cell, Journal of Power Sources 158 (1)

(2006) 94–102. doi:10.1016/j.jpowsour.2005.09.038.

R. Campbell, M. G. Bakker, C. Treiner, J. Chevalet, Electrodeposition

of mesoporous nickel onto foamed metals using surfactant and

polymer templates, Journal of Porous Materials 11 (2) (2004) 63–69.

doi:10.1023/B:JOPO.0000027361.04282.f6.

N. P. Brandon, D. J. Brett, Engineering porous materials for fuel

cell applications, Philosophical transactions. Series A, Mathematical,

physical, and engineering sciences 364 (1838) (2006) 147–159.

doi:10.1098/rsta.2005.1684.

K. Czelej, K. Cwieka, J. C. Colmenares, K. Kurzydłowski, Atomistic

insight into the electrode reaction mechanism of cathode in Molten

Carbonate Fuel Cell, J. Mater. Chem. A 5 (26) (2017) 13763–13768.

doi:10.1039/c7ta02011b.

K. Czelej, K. Cwieka, J. C. Colmenares, K. J. Kurzydlowski,

Catalytic activity of NiO cathode in molten carbonate fuel

cells, Applied Catalysis B: Environmental 222 (2018) 73–75.

doi:10.1016/j.apcatb.2017.10.003.

R. O’Hayre, D. M. Barnett, F. B. Prinz, The triple phase boundary.

a mathematical model and experimental investigations for fuel cells,

Journal of The Electrochemical Society 152 (2) (2005) A439–A444.

doi:10.1149/1.1851054.

S. Zhang, A. M. Gokhale, Computer simulations of topological connectivity

of the triple phase boundaries in solid oxide fuel cell composite

cathodes, Journal of Power Sources 219 (2012) 172–179.

doi:10.1016/j.jpowsour.2012.07.049.

V. M. Janardhanan, V. Heuveline, O. Deutschmann, Threephase

boundary length in solid-oxide fuel cells: A mathematical

model, Journal of Power Sources 178 (1) (2008) 368–372.

doi:10.1016/j.jpowsour.2007.11.083.

T. Wejrzanowski, J. Gluch, S. H. Ibrahim, K. Cwieka, J. Milewski,

E. Zschech, Characterization of spatial distribution of electrolyte in

molten carbonate fuel cell cathodes, Advanced Engineering Materials

(2018) 1700909.doi:10.1002/adem.201700909.

J. R. Selman, Research, development, and demonstration of molten

carbonate fuel cell systems, Springer US, Boston, MA, 1993, pp. 345–

D. Stoyan, A. Wagner, H. Hermann, A. Elsner, Statistical characterization

of the pore space of random systems of hard spheres,

Journal of Non-Crystalline Solids 357 (6) (2011) 1508–1515.

doi:10.1016/j.jnoncrysol.2010.12.033.

H. Hermann, A. Elsner, M. Hecker, D. Stoyan, Computer simulated

dense-random packing models as approach to the structure of porous

low-k dielectrics, Microelectronic Engineering 81 (2-4) (2005) 535–

doi:10.1016/j.mee.2005.03.058.

A. Bezrukov, M. Bargieł, D. Stoyan, Statistical analysis of simulated

random packings of spheres, Particle and Particle Systems Characterization

(2) (2002) 111–118. doi:10.1002/ppsc.200600974.

T. Wejrzanowski, S. H. Ibrahim, J. Skibinski, K. Cwieka, K. J.

Kurzydlowski, Appropriate models for simulating open-porous materials,

Image Analysis and Stereology 36 (2) (2017) 107–112.

doi:10.5566/ias.1649.

T. Wejrzanowski, S. H. Ibrahim, K. Cwieka, J. Milewski, K. J. Kurzydlowski,

Design of open-porous materials for high-temperature fuel

cells, Journal of Power Technologies 96 (3) (2016) 178–182.

T. Wejrzanowski, J. Skibinski, J. Szumbarski, K. J. Kurzydlowski,

Structure of foams modeled by Laguerre-Voronoi tessellations,

Computational Materials Science 67 (2013) 216–221.

doi:10.1016/j.commatsci.2012.08.046.

H. Viet, P. Nguyen, M. Roslee, D. Seo, S. Pil, H. Chul,

S. Woo, J. Han, J. Kim, Nano Ni layered anode for enhanced

MCFC performance at reduced operating temperature, International

Journal of Hydrogen Energy 39 (23) (2014) 12285–12290.

doi:10.1016/j.ijhydene.2014.03.253.


Refbacks

  • There are currently no refbacks.