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Abstract

Accurate electricity price forecasting is of great importance for risk-analysis and decision-making in the electricity market.
However, due to the characteristics of randomness and non-linearity associated with the electricity price series, it is difficult to
build a precise forecasting model. If the electricity market price can be predicted properly, the generation companies and the
load service entities as the main market participating entities can reduce their risks and further maximize their outcomes. In
this work, adaptive longterm electricity price forecasting modelling using Monte Carlo simulation is proposed. The applicability
of the prediction performance of the method is demonstrated for the case of electricity and oil price prediction, for vaious
forecasting periods. Oil price prediction is an external factor for electricity price forecasting and is becoming very important in
power systems running on oil derivatives. The proposed method could be useful for long term studies, evaluating the risk for
financing since good electricity price forecast feeds into developing cost effective risk management plans for the participating
companies in the electricity market and thus will help attract appropriate financing.
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1. Introduction

More than 30 years have passed since the publication
of the seminal work on electricity market restructuring [1],
more than 25 years since the United Kingdom began to de-
sign its innovative and comprehensive program on privatiza-
tion, restructuring for competition and regulatory reform in
the electricty sector. Gradually, countries inside and outside
of the European Union have followed the UK’s lead and in-
troduced comprehensive electricity sector reform programs.
While other countries may have introduced less comprehen-
sive and consistent reform programs, the main principles of
opening up the electricity market have been followed.

Electricity pricing plays a key role in the economy of all
countries. In recent decades, the traditionally monopolistic
and government-controlled electricity market has been trans-
formed into a deregulated and competitive market system in
many countries, with the role of electricity pricing in balanc-
ing electricity generation and consumption becoming more
important. In this deregulated and competitive market en-
vironment, electricity can be freely traded in the market en-
vironment like other ordinary commodities, so the electricity
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price which can reflect the relationship between supply and
demand of electricity becomes one of the most important el-
ements in the electricity market.

Consequently, the decision making processes of all elec-
tricity market participants are highly dependent on the elec-
tricity price, making modeling electricity prices one of the cor-
nerstones of research into energy markets.

For instance, electricity price forecasting is very useful for
electricity generators, retailers and consumers when deter-
mining their offering and bidding strategies. Thus, accu-
rate electricity price forecasting is essential and significant
for the whole electricity power system and market. More-
over, electricity demand is highly dependent on many factors
including high frequency, non-constant mean and variance
(non-stationary series), multiple seasonality (corresponding
to daily and weekly periodicity, respectively), calendar ef-
fect (weekends, holidays), high volatility and high percent-
age of unusual prices (mainly in periods of high demand)
due to unexpected or uncontrolled events in the electricity
markets, weather, intensity of business and daily activities,
special characteristics such as randomness, non-stationarity
and non-linearity, which all make electricity prices fluctuate
frequently. Therefore, it is far from easy to predict electricity
price with high accuracy.

Proper electricity price forecast can help build up cost ef-
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fective risk management plans for the companies participat-
ing in the electricity market and, most importantly, can help
them obtain appropriate financing. If the electricity market
price can be predicted properly, the generation companies
and the load service entities as the main market players can
reduce their risks and maximize their outcomes [2].

Selecting the best forecasting technique depends on fac-
tors such as product (spot price, forward price), term (day to
day, month to month, year to year) and market design (sin-
gle, multiple settlement system). In addition, electricity prices
are driven by external factors, e.g., wind and solar availabil-
ity, electricity demand and fuel cost (e.g., oil or natural gas
or coal price). Fuel cost is very important in power systems
running on oil derivatives.

In this work, an adaptive longterm electricity price fore-
casting modelling using Monte Carlo simulation is proposed.
The applicability of the prediction performance of the method
is demonstrated for the case of electricity prices and oil
prices prediction, for different forecasting periods.

The rest of this paper is organized as follows. Section
2 provides a cosine literature review of recent modeling for
electricity price forecasting. Section 3 describes in detail the
methodology adopted in this work. Section 4 presents a dis-
cussion of the results obtained. Section 5 contains the con-
cluding remarks.

2. Electricity price forecasting modeling

In recent decades the modeling of electricity prices has
become a broad and complex field of research. Due to the
liberalization of markets and increasing disclosure of data,
new insights were gained into the structure and behavior of
prices. There are certain characteristics of electricity prices
that are typical regardless of where the electricity is traded
and they are summarized in [3]. One of these characteristics
concerns major deviations of the price pattern from its mean,
termed price spikes. This specific feature of electricity prices
has huge impacts for research, as well as for energy policies
and companies. Many electricity companies, in Germany for
example, are obliged to market some of their electricity on an
exchange and this makes their earnings prone to large price
spikes, thereby creating a complex task for their risk man-
agement teams. Moreover, many financial contracts such
as futures or options are dependent on the variance of the
price process and therefore demand eligible estimation tech-
niques. Also, the long-term cost calculation for investment
projects or energy strategy programs—like the development
of renewable energy—are dependent on stable and reliable
methods for the calculation of electricity prices which can ac-
count for the likelihood of price spikes. Therefore, a great va-
riety of models for estimating the electricity price have been
created in the last few decades. Those models are often re-
lated to well-known models from finance literature, but can
also originate from many other fields of research [4].

The electricity price as decided on exchanges is the result
of competitive bidding and offering. Focusing merely on the
time series of prices, therefore, neglects their true source. If

the true sale and purchase curves were known, the price
could be determined solely by the intersection of the two
curves, regardless of any time dependencies between dif-
ferent prices. In addition, electricity prices are driven by ex-
ternal factors [5], e.g., wind and solar or electricity demand or
fuel cost (e.g., oil, natural gas or coal price). However, taking
a closer look at the underlying price process, it can be stated
that it is the buyers and sellers on an electricity exchange that
are influenced by those factors and therefore adjust their bids
[6]. Reasons for that can be, e.g., that these market partici-
pants are electricity companies which are facing heavy over-
production of electricity due to an unexpected change in wind
speed or temperature or underproduction due to power plant
outages.

The market participants are not equal, as they include
investment companies, electricity producers and transmis-
sion service operators, among others. Not all electricity
producers are equal either, as they have distinct produc-
tion portfolios and are therefore, more or less likely prone
to, e.g., weather conditions. Hence, an unexpected shift
in wind production levels for instance can lead to major or
minor changes in price, dependent on whether the equilib-
rium price of the market was already mainly driven by wind
producers. This diversified information is summarized in the
sale and purchase curve of electricity prices [4]. Hence, es-
pecially for estimating large price movements it is essential to
know if the market is capable of adjusting for external shocks
easily or if a major price spike will occur [7]. This sensitivity
of the intersection price can, therefore, be obtained by ana-
lyzing the original price curves instead of only their outcome
as price time series.

Electricity price models can be divided into three different
groups, such as, multi-agent models, fundamental models
and time series forecasting models. Multi-agent models usu-
ally focus on the supply and demand of electricity to obtain
prices through equilibrium, optimization or simulation [2], [8],
but hence often do not incorporate the time series of electric-
ity bids and asks of a real exchange into their approaches.
Fundamental approaches cover a great variety of models,
but mainly emphasize the basic economic and physical rela-
tionships of the market [9].

The most frequently used approaches for electricity price
forecasting are based on time series forecasting models
which focus on the price itself or related time series fore-
casting methods like renewable energy or electricity de-
mand or fuel price. Series forecasting methods can be di-
vided into statistical models, artificial intelligence (AI) mod-
els and hybrid models [10]. In the first category, the
widely applied models mainly include auto-regressive mov-
ing average (ARMA), auto-regressive integrated moving av-
erage (ARIMA), vector auto-regression (VAR), generalized
autoregressive conditional heteroskedasticity (GARCH) and
kalman filters methods. For example in [11], the tourism
demand based on ARMA models is forecasted and the re-
sults showed that the models perform very well. In [12], the
ARIMA model is employed to forecast consumer retail sales,
and the results demonstrated that the model performs well
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in both one-step and multi-step forecasting. A VAR model
is used in [13] in order to predict inflation and marginal cost
in United States. Forecasting carbon futures volatility based
on the GARCH model is investigated in [14] and the results
demonstrated that the model performs with good accuracy.
Finally, in [15] an ensemble Kalman filter method for elec-
tricity load forecasting is proposed and the simulation results
indicated that the forecast accuracy of the model is obviously
better than the present state-of-the-art models.

In the second category, a great number of AI methods
have been used in different forecasting fields during the past
years, such as the artificial neural network (ANN), extreme
learning machine (ELM), support vector machine (SVM)
and least squares support vector machine (LSSVM). For in-
stance, in [16] day-ahead electricity price forecasting through
application of ANN models was investigated and the results
showed that ANN topologies merit further examination. The
application of ANN in global solar irradiance (GSI) short-
term forecasting was investigated in [17] and the results of
the study indicated that ANN models are suitable for predict-
ing short-term GSI. In [18] a novel model based on ELM for
electricity load demand forecasting was developed and the
results proved the high performance of the proposed model.
A modified SVM model for short-term wind speed forecast-
ing was proposed in [19] with the experiments showing that
the model can outperform in the majority of cases compared
to other models. In [20] a weighted LSSVM predicting model
based on a learning system for time series forecasting is de-
veloped with the results testifying to the validity of the pro-
posed model.

The traditional time series forecasting models applied on
the original data series cannot precisely expose the compli-
cated relations existed in the non-linear and non-stationary
data series. Therefore, many researchers have been mak-
ing efforts to handle the non-linearity and non-stationarity
that existed in the data series by using various data de-
composition techniques prior to forecasting. For example,
in [21] a hybrid model based on wavelet packet transform
(WPT), phase space reconstruction (PSR) and LSSVM for
wind speed forecasting is developed, demonstrating that the
WPT decomposition technique makes a great contribution
on forecast accuracy. In [22] a similar forecasting method
was investigated, based on the WPT decomposition tech-
nique proposed in [21]. The results based on two wind speed
series collected from a wind power observation station in the
Netherlands demonstrated that the proposed hybrid model
outperforms other benchmark models.

In [23] similar forecasting issues as with [21] were investi-
gated and a hybrid model was developed, based on wavelet
transform (WT) and SVM optimized by genetic algorithm
(GA). A bivariate EMD-based SVM model for interval-valued
electricity demand forecasting was developed in [24] and the
results demonstrated that the proposed model is a promising
method. Finally, in [25] the advantages of single decomposi-
tion techniques were combined in a hybrid model based on
the two-layer decomposition technique and BP neural net-
work, optimized by FA for multi-step ahead electricity price

forecasting. The model was tested using three electricity
price data series collected respectively from the real-world
electricity markets of Australia and France.

3. Forecasting model

Electricity prices exhibit jumps in prices at periods of high
demand when additional, less efficient electricity genera-
tion methods are brought online to provide a sufficient sup-
ply of electricity. In addition, for long term forecasting the
daily electricity prices have a prominent seasonal compo-
nent, along with regression to mean levels. Therefore, these
characteristics should be incorporated into a model for long
term electricity price forecasting.

In this work, electricity price is modeled as [26]:

log(Pt) = f (t) + Xt, (1)

where Pt is the spot price of electricity in US$/MWh. The log-
arithm of electricity price is modeled with two components:
(a) f (t) and (b) Xt. The component f (t) is the deterministic
seasonal part of the model, and Xt is the stochastic part of
the model. Trigonometric functions are used to model f (t) as
follows:

f (t) = s1 sin(2πt) + s2 cos(2πt) + s3 sin(4πt) + s4 cos(4πt) + s5, (2)

where si, i = 1, 2, ..., 5 are constant parameters, and t
is the annualized time factors. The stochastic component
Xt is modeled as an Ornstein-Uhlenbeck process (mean-
reverting) with jumps:

dXt = (α − κXt)dt + σdWt + J(µ j, σ j)dΠ(λ). (3)

The parameters α and κ are the mean-reversion parameters.
Parameter σ is the volatility, and Wt is a standard Brownian
motion. The jump size is J(µ j, σ j), with normally distributed
mean µ j and standard deviation σ j. The Poisson process
Π(λ) has a jump intensity of λ.

Historic daily electricity prices are used as an input data
containing the electricity prices and price date. The loga-
rithm of the prices and annual time factors are then calcu-
lated.

First, the deterministic seasonality part is calibrated using
the least squares method. Since the seasonality function is
linear with respect to the parameters si, the backslash oper-
ator is used. After the calibration, the seasonality is removed
from the logarithm of price. The second stage is to calibrate
the stochastic part. The model for Xt needs to be discretized
in order to conduct the calibration. To discretize, we assume
a Bernoulli process for the jump events. That is, there is at
most one jump per day since we are calibrating against daily
electricity prices.

The discretized equation is:

Xt = α∆t + φXt−1 + σξ (4)

with probability (1 − λ∆t) and

Xt = α∆t + φXt−1 + σξ + µ j + σ jξ j (5)
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with probability λ∆t, where ξ and ξ j are independent stan-
dard normal random variables, and φ = 1 − κ∆t. The density
function of Xt given Xt−1 is:

f (Xt |Xt−1) = (λ∆t)N1(Xt |Xt−1) + (1 − λ∆t)N2(Xt |Xt−1) (6)

N1(Xt |Xt−1) =
[
2π(σ2 + σ2

j )
]− 1

2 e

 −(Xt−α∆t−φXt−1−µ j )2

2(σ2+σ2
j )


(7)

N2(Xt |Xt−1) = (2πσ2)−
1
2 e

[
−(Xt−α∆t−φXt−1)2

2σ2

]
(8)

The parameters θ = {α, φ, µ j, σ
2, σ2

j , λ} can be calibrated
by minimizing the negative log likehood function:

min θ −
T∑

t=1

log
[
f (Xt |Xt−1)

]
(9)

subject to:

φ < 1 (10)

σ2 > 0 (11)

σ2
j > 0 (12)

0 ≤ λ∆t ≤ 1 (13)

The first inequality constraint, φ < 1, is equivalent to κ >
0. The volatilities σ and σ j must be positive. In the last
inequality, λ∆t is between 0 and 1, because it represents the
probability of a jump occurring in time. If we take ∆t to be
one day, consequently there are at most 365 jumps in one
year.

The calibrated parameters and the discretized model al-
low us to simulate electricity prices in real-world probability,
using Monte Carlo simulation. The simulation is conducted
for a specified number of years with 10,000 trials. Finally, the
seasonality is added back on the simulated paths.

4. Forecasting results
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Figure 1: Historic electricity prices

In this paper, two cases are examined to illustrate the pre-
diction performance of the proposed method. In case 1 the
proposed method is applied to predict electricity prices and
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Figure 2: Historic oil prices

in case 2 the proposed method is tested for oil price forecast-
ing. The latter, as explained before, is an external factor for
electricity price forecasting and becomes very important in
power systems running on oil derivatives. For both cases his-
toric data for the period 1999-2017 was obtained from [27],
as illustrated in Fig. 1 and in Fig. 2. In particular for case
1, the average electricity price for the period 1999-2017 is
49.18 US$/MWh with a maximum price of 288.83US$/MWh
and a minimum price of 14.41US$/MWh. For case 2, the av-
erage oil price for the period 1999-2017 is 68.72 US$/bbl with
a maximum price of 143.95 US$/bbl and a minimum price of
9.77 US$/bbl.

Figure 3: Convergence of the method

In order to demonstrate the applicability of the method for
each case, forecasting horizons of 2 years, 5 years and 10
years were selected. The convergence of the model is also
examined for a different number of trials. In particular, the
convergence of the method for case 1 with a forecast horizon
of 2 years is illustrated in Fig. 3. We observe that the average
forecasted electricity price for the 2 year horizon is around
38US$/MWh for all number of trials investigated, justifying
the stability and precision of the model.

The simulation results regarding case 1 (prediction of elec-
tricity prices) are presented in Fig. 4, Fig. 5 and Fig. 6. It is
evident that—for all periods examined—the predicted elec-
tricity prices follow the behavior of the historic data used.
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Figure 4: Results for 2 year forecasting of electricity prices
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Figure 5: Results for 5 year forecasting of electricity prices
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Figure 6: Results for 10 year forecasting of electricity prices

Table 1: Forecasted electricity price

Forecast horizon Average price Maximum price Minimum price

US$/MWh US$/MWh US$/MWh

2 years 38.04 70.70 14.52
5 years 36.90 84.41 15.13
10 years 34.97 81.99 16.43

More specifically, for a 2 year forecasting horizon the aver-
age price is 38.04 US$/MWh compared to the historic aver-
age of 49.18 US$/MWh. Also, for the 5 year and 10 year
periods the associated predicted average electricity prices
are 36.90 US$/MWh and 34.97 US$/MWh respectively. A

summary of the results is tabulated in Table 1 including the
forecasted minimum and maximum electricity prices for each
period.
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Figure 7: Results for 2 year forecasting of electricity prices
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Figure 8: Results for 5 year forecasting of electricity prices
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Figure 9: Results for 10 year forecasting of electricity prices

Table 2: Forecasted oil price

Forecast horizon Average price Maximum price Minimum price

US$/bbl US$/bbl US$/bbl

2 years 112.36 183.24 58.74
5 years 123.72 221.30 48.49
10 years 145.35 312.87 58.74
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The simulation results regarding case 2 (prediction of oil
prices) are presented in Fig. 7, Fig. 8 and Fig. 9. As be-
fore, it is evident that for all periods examined the pre-
dicted oil prices follow the behavior of the historic data
used. In this case, for a 2 year forecast horizon the average
price is 112.36 US$/bbl compared to the historic average of
68.72 US$/bbl. Also, for the 5 year and 10 year periods the
associated predicted average oil prices are 123.72 US$/bbl
and 145.35 US$/bbl respectively. A summary of the results
is tabulated in Table 2 including the forecasted minimum and
maximum oil prices for each period.

5. Conclusions

Accurate electricity price forecasting is of great importance
for risk-analysis and decision-making in the electricity mar-
ket. However, because of the characteristics of randomness
and non-linearity associated with the electricity price series,
it is difficult to build a precise forecasting model. If the elec-
tricity market price can be predicted properly, the generation
companies and load service entities—as the main market
players—can reduce their risks and maximize their outcomes
further.

In this work an adaptive longterm electricity price forecast-
ing model using Monte Carlo simulation was proposed. The
applicability of the prediction performance of the method was
demonstrated for the case of electricity price and oil price
prediction, for different forecast periods. Oil price prediction
is an external factor for electricity price forecasting and is
very important in power systems running on oil derivatives.
The proposed method can be useful for long term studies
and for evaluating the risk for financing since accurate elec-
tricity price forecasting can help market players build up cost
effective risk management plans and, thus, obtain appropri-
ate financing.
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