BIULETYN INFORMACYJNY INSTYTUTU TECHNIKI CIEPLNEJ POLITECHNIKA WARSZAWSKA

Nr 45

1977

mgr inż. Jerzy Kołtyś

Instytut Pojazdów Politechniki Warszawskiej

ZAGADNIENIE NIEUSTALONEGO PRZEWODZENIA CIEPŁA W PŁYCIE NIEOGRANICZONEJ PRZY NIESYMETRYCZNYCH WARUNKACH BRZEGOWYCH III RODZAJU

W artykule przedstawiono analityczne rozwiązanie zagadnienia nieustalonego przewodzenia ciepła w płycie dla warunków brzegowych III rodzaju. Równoważne rozwiązania otrzymano metodami Laplace a i Fouriera.

Podano wykresy temperatur dla kilku wybranych przypadków przewodzenia ciepła na podstawie obliczeń wykonanych na EMC.

Oznaczenia stosowane w pracy

Rys.1. Oznaczenia

T - temperatura płyty,

 T_1 , T_2 - temperatury czynników omywających płytę, λ - współczynnik przewodzenia ciepła, α_1 , α_2 - współczynniki przejmowania ciepła,

 $Bi_1 = \frac{\alpha_1 l}{\lambda}$, $Bi_2 = \frac{\alpha_2 l}{\lambda}$ - liczby Biota, a - współczynnik wyrównywania temperatur, t - czas,

Fo = $\frac{a t}{1^2}$ - liczba Fouriera,

x - współrzędna grubości płyty,

1 - połowa grubości płyty.

W zmiennych warunkach pracy maszyn cieplnych takich jak: rozruch lub zmiana obciążenia występują nieustalone w czasie przebiegi temperatur w elementach tych maszyn. Często do analizy ich przebiegów wystarczy posłużyć się pewnymi uproszczonymi modelami fizycznymi. Można przyjąć, że ustalenie temperatur i współczynników wymiany ciepła następuje znacznie szybciej niż w elemencie stałym (np. w ściance).

Jeżeli przy tym, zagadnienie daje się sprowadzić do przewodzenia ciepła w płycie wymieniającej ciepło z otoczeniem wg wzoru Newtona, to wystarczy użyć modelu jednowymiarowego.

Omawiany model można opisać matematycznie następująco: równanie przewodzenia ciepła w płycie

$$\frac{\partial \mathbf{T}}{\partial t} = \mathbf{a} \frac{\partial^2 \mathbf{T}}{\partial_x^2} , \qquad (1)$$

warunek początkowy

$$\mathbf{T}_{\mathbf{n}} = \mathbf{f}(\mathbf{x}), \qquad (2)$$

warunki brzegowe

dla t = 0

$$-\lambda \frac{\partial T}{\partial x}\Big|_{-1} = \alpha_1 \Big[T_1 - T(-1,t) \Big], \qquad (3)$$

$$-\lambda \frac{\partial T}{\partial x}\Big|_{1} = \alpha_{2} \Big[T(1,t) - T_{2} \Big].$$
(4)

Powyższe zagadnienie daje się rozwiązać analitycznie, co zostało nadmienione w pracy [1] jako zestawienie dwu podanych tam rozwiązań uproszczonych w stosunku do zagadnienia przedstawionego równaniami (1) ÷ (4).

W pracy [2] podano rozwiązanie metodą Laplace a podobnego zagadnienia przy założeniu upraszczającym $T_1 = T_2$.

Rozwiązanie to niestety nie budzi zaufania, gdyż w granicznym przypadku, gdy t-∞ nie daje prawidłowego rezultatu.

Dlatego celem tej pracy jest rozwiązanie zagadnienia (1)÷ (4) metodami: przekształcenia Laplace'a oraz rozdzielenia zmiennych Fouriera i sprawdzenie ich w praktyce obliczeniowej.

W metodzie Laplace a dokonuje się transformacji równań (1) ÷ (4) względem współrzędnej t (nowa współrzędna czasu - s).

Z równania (1) otrzymuje się

$$s T(x,s) - T_p(x) = a \frac{\partial^2 T(x,s)}{\partial x^2}$$
 (5)

Z transformacji warunków brzegowych (3) i (4) otrzymano:

$$-\lambda \frac{\partial T}{\partial \mathbf{x}}\Big|_{-1} = \alpha_1 \left[\frac{T_1}{s} - T(-1,s) \right], \qquad (6)$$

$$\left. -\lambda \frac{\partial T}{\partial x} \right|_{1} = \alpha_{2} \left[T(1,s) - \frac{T_{2}}{s} \right].$$
 (7)

Rozwiązaniem równania (5), gdy $T_p(x) = T_p$ jest funkcja

$$T(\mathbf{x},\mathbf{s}) = \frac{T_p}{\mathbf{s}} + A \, \mathrm{sh}\sqrt{\frac{\mathbf{s}}{\mathbf{a}}} \, \mathbf{x} + B \, \mathrm{ch}\sqrt{\frac{\mathbf{s}}{\mathbf{a}}} \, \mathbf{x}. \tag{8}$$

Podstawienie (8) do równań (6) i (7) daje układ równań:

$$\begin{bmatrix} \sqrt{\frac{S}{a}} \operatorname{ch} \sqrt{\frac{S}{a}} 1 + \frac{\alpha_1}{\lambda} \operatorname{sh} \sqrt{\frac{S}{a}} 1 \end{bmatrix} A - \begin{bmatrix} \sqrt{\frac{S}{a}} \operatorname{sh} \sqrt{\frac{S}{a}} 1 + \frac{\alpha_1}{\lambda} \operatorname{ch} \sqrt{\frac{S}{a}} 1 \end{bmatrix} B = -\frac{\alpha_1}{\lambda} \frac{T_1 - T_p}{S},$$

$$\left[\sqrt{\frac{s}{a}} \operatorname{ch}\sqrt{\frac{s}{a}} 1 + \frac{\alpha_2}{\lambda} \operatorname{sh}\sqrt{\frac{s}{a}} 1\right] \mathbb{A} + \left[\sqrt{\frac{s}{a}} \operatorname{sh}\sqrt{\frac{s}{a}} 1 + \frac{\alpha_2}{\lambda} \operatorname{ch}\sqrt{\frac{s}{a}} 1\right] \mathbb{B} = \frac{\alpha_2}{\lambda} \frac{T_2 - T_p}{s}.$$

Wyznaczenie z tego układu równań stałych A i B i wstawienie ich do równania (8) oraz wprowadzenie oznaczeń

$$\operatorname{Bi}_{1} = \frac{\alpha_{1} 1}{\lambda}, \quad \operatorname{Bi}_{2} = \frac{\alpha_{2} 1}{\lambda}$$
 (9)

daje wzór na transformatę rozwiązania

$$T(x,s) = \frac{T_{p}}{s} + \left\{ s \left[\left(\frac{s}{a} \ 1^{2} + Bi_{1}Bi_{2} \right) sh \ 2\sqrt{\frac{s}{a}} \ 1 + \left(Bi_{1} + Bi_{2} \right) \ 1\sqrt{\frac{s}{a}} ch \ 2\sqrt{\frac{s}{a}} \ 1 \right] \right\}^{-1}.$$
(10)

$$\left(\left\{ \begin{bmatrix} \operatorname{Bi}_{1}(\operatorname{T}_{p}-\operatorname{T}_{1}) - \operatorname{Bi}_{2}(\operatorname{T}_{p}-\operatorname{T}_{2}) & \operatorname{I}\sqrt{\underline{s}} \\ + & \operatorname{Bi}_{1}\operatorname{Bi}_{2}(\operatorname{T}_{2}-\operatorname{T}_{1}) & \operatorname{ch}\sqrt{\underline{s}} \\ + & \operatorname{Bi}_{1}(\operatorname{T}_{1}-\operatorname{T}_{p}) \end{bmatrix} & \operatorname{ch}\sqrt{\underline{s}} & \operatorname{l} \right\} \operatorname{sh} \sqrt{\underline{s}} & \operatorname{x} + \left\{ \begin{bmatrix} \operatorname{Bi}_{2}(\operatorname{T}_{2}-\operatorname{T}_{p}) + \\ & \operatorname{Bi}_{1}(\operatorname{T}_{1}-\operatorname{T}_{p}) \end{bmatrix} & \operatorname{I}\sqrt{\underline{s}} & \operatorname{ch}\sqrt{\underline{s}} & \operatorname{l} + & \operatorname{Bi}_{1}\operatorname{Bi}_{2}(\operatorname{T}_{1}+\operatorname{T}_{2}-\operatorname{2T}_{p}) & \operatorname{sh}\sqrt{\underline{s}} & \operatorname{l} \right\} \operatorname{ch}\sqrt{\underline{s}} & \operatorname{x} \right).$$

Wzór (10) można zapisać przy użyciu odpowiednich oznaczeń następująco

$$\Gamma(\mathbf{x},\mathbf{s}) = \frac{T_{\mathbf{p}}}{\mathbf{s}} + \frac{\psi(\mathbf{s})}{\mathbf{s}\,\varphi(\mathbf{s})}, \qquad (11)$$

gdzie:

$$\varphi(\mathbf{s}) = \left(\frac{\mathbf{s}}{\mathbf{a}} \mathbf{1}^2 + \mathbf{Bi}_1 \mathbf{Bi}_2\right) \operatorname{sh} 2\sqrt{\frac{\mathbf{s}}{\mathbf{a}}} \mathbf{1} + \left(\mathbf{Bi}_1 + \mathbf{Bi}_2\right) \mathbf{1}\sqrt{\frac{\mathbf{s}}{\mathbf{a}}} \operatorname{ch} 2\sqrt{\frac{\mathbf{s}}{\mathbf{a}}} \mathbf{1}, \qquad (12)$$

 $\psi(s)$ jest odpowiednią częścią wyrażenia (10). Aby znaleźć transformatę odwrotną rozwiązania należy znaleźć bieguny wyrażenia (10). Będą to pierwiastki równania

$$\mathbf{s}\,\varphi(\mathbf{s}) = \mathbf{0}\,.\tag{13}$$

Dla s = 0 otrzymuje się wyrażenie reprezentujące stan ustalony ze wzoru

$$T_{N}(\mathbf{x}) = \lim_{s \to 0} \left[T_{p} + \frac{\psi(\mathbf{s})}{\varphi(\mathbf{s})} \right] = \frac{(T_{2}-T_{1})Bi_{1}Bi_{2}\frac{\mathbf{x}}{1} + T_{1}Bi_{1}(1+Bi_{2}) + T_{2}Bi_{2}(1+Bi_{1})}{Bi_{1} + Bi_{2} + 2Bi_{1}Bi_{2}}.$$
 (14)

Dla s = 0, tzn. pierwiastków s_n równania (12) otrzymuje się człon reprezentujący zależność od czasu

$$T_{E}(x,t) = \sum_{n=1}^{\infty} \lim_{s \to s_{n}} \frac{s e^{st}}{s \varphi'(s)}, \qquad (15)$$

gdzie:

$$s \varphi'(s) = s \left[\left(\frac{s}{a} 1^2 + Bi_1 Bi_2 \right) sh 2\sqrt{\frac{s}{a}} 1 + \left(Bi_1 + Bi_2 \right) 1\sqrt{\frac{s}{a}} ch 2\sqrt{\frac{s}{a}} 1 \right]' = \frac{s}{a} 1^2 (1 + Bi_1 + Bi_2) sh 2\sqrt{\frac{s}{a}} 1 + \left[\left(\frac{s}{a} 1^2 + Bi_1 Bi_2 \right)\sqrt{\frac{s}{a}} 1 + \frac{1}{2} (Bi_1 + Bi_2) 1\sqrt{\frac{s}{a}} \right] ch 2\sqrt{\frac{s}{a}} 1.$$

Zamiast rozwiązywać równanie $\varphi(s) = 0$ do wzoru (12) wprowadza się oznaczenie

$$\gamma = i \sqrt{\frac{s}{a}} 1$$
 (16)

i otrzymuje się równanie na γ

$$(\text{Bi}_1 \text{ Bi}_2 - \gamma^2) \sin 2\gamma + (\text{Bi}_1 + \text{Bi}_2) \gamma \cos 2\gamma = 0.$$
 (17)

Z powyższego równania otrzymuje się wartości γ_n dla odpowiednich Bi₁ i Bi₂.

Ze wzoru (15), po wprowadzeniu oznaczenia (16), otrzymuje się:

$$T_{\mathbf{E}}(\mathbf{x},\mathbf{t}) = \sum_{n=1}^{\infty} \frac{2}{(\mathrm{Bi}_{1}+\mathrm{Bi}_{2}+2 \mathrm{Bi}_{1}\mathrm{Bi}_{2}-2\mathfrak{f}_{n}^{2})\mathfrak{f}_{n}\cos 2\mathfrak{f}_{n}-2\mathfrak{f}_{n}^{2}(1+\mathrm{Bi}_{1}+\mathrm{Bi}_{2})\sin 2\mathfrak{f}_{n}} \cdot \left(\left\{\left[\mathrm{Bi}_{2}(\mathrm{T}_{p}-\mathrm{T}_{2})-\mathrm{Bi}_{1}(\mathrm{T}_{p}-\mathrm{T}_{1})\right]\mathfrak{f}_{n}\sin \mathfrak{f}_{n}+\mathrm{Bi}_{1}\mathrm{Bi}_{2}(\mathrm{T}_{2}-\mathrm{T}_{1})\cos \mathfrak{f}_{n}\right\}\sin \mathfrak{f}_{n}\frac{\mathbf{x}}{1}+ \left\{\left[\mathrm{Bi}_{2}(\mathrm{T}_{2}-\mathrm{T}_{p})+\mathrm{Bi}_{1}(\mathrm{T}_{1}-\mathrm{T}_{p})\right]\mathfrak{f}_{n}\cos \mathfrak{f}_{n}+\mathrm{Bi}_{1}\mathrm{Bi}_{2}(\mathrm{T}_{1}+\mathrm{T}_{2}-2\mathrm{T}_{p})\sin \mathfrak{f}_{n}\right\}\cos \mathfrak{f}_{n}\frac{\mathbf{x}}{1}\right)\exp\left(-\frac{\mathfrak{F}_{n}^{2}}{\mathfrak{a}^{2}}\right).$$
(18)

Suma otrzymanych rozwiązań (14) i (18) daje końcowe rozwiązanie zagadnienia metodą Laplace a

$$T(x,t) = T_N(x) + T_E(x,t) =$$

 \sim

$$=\frac{(T_2-T_1)Bi_1Bi_2}{Bi_1+Bi_2+Bi_1(1+Bi_2)+T_2Bi_2(1+Bi_1)}+$$

$$+ \sum_{n=1}^{2} \frac{2}{(\operatorname{Bi}_{1} + \operatorname{Bi}_{2} + 2\operatorname{Bi}_{1} \operatorname{Bi}_{2} - 2\sigma_{n}^{2})} \sigma_{n} \cos 2\sigma_{n} - 2\sigma_{n}^{2}(1 + \operatorname{Bi}_{1} + \operatorname{Bi}_{2}) \sin 2\sigma_{n}} \cdot \left(\left\{ \left[\operatorname{Bi}_{2}(\operatorname{T}_{p} - \operatorname{T}_{2}) - \operatorname{Bi}_{1}(\operatorname{T}_{p} - \operatorname{T}_{1}) \right] \sigma_{n} \sin\sigma_{n} + \operatorname{Bi}_{1} \operatorname{Bi}_{2}(\operatorname{T}_{2} - \operatorname{T}_{1}) \cos\sigma_{n} \right\} \sin\sigma_{n} \frac{x}{1} + \left\{ \left[\operatorname{Bi}_{2}(\operatorname{T}_{2} - \operatorname{T}_{p}) + \operatorname{Bi}_{1}(\operatorname{T}_{1} - \operatorname{T}_{p}) \right] \sigma_{n} \cos\sigma_{n} + \operatorname{Bi}_{1} \operatorname{Bi}_{2}(\operatorname{T}_{1} + \operatorname{T}_{2} - \operatorname{Com}_{1} + \operatorname{Bi}_{2}) \sin\sigma_{n} \right\} \cos\sigma_{n} \frac{x}{1} \right\} \cos\sigma_{n} \frac{x}{1} \exp\left(-\frac{\sigma_{n}^{2} \operatorname{at}_{1}}{1^{2}}\right), \quad (19)$$

gdzie J_n znajduje się z równania (17).

Zagadnienie (1) ÷ (4) można rozwiązać również metodą rozdzielenia zmiennych Fouriera.

Rozwiązanie zagadnienia przewodzenia, przedstawionego równaniami (1) ÷ (4) metodą Fouriera, będzie polegać na poszukiwaniu funkcji

$$T(x,t) = T_N(x) + T_E(x,t).$$
 (19')

Funkcja T_N(x) spełnia jednorodne równanie przewodnictwa

$$\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} = 0$$
 (20)

oraz uproszczone warunki brzegowe (3) i (4), a więc będzie rozwiązaniem stanu ustalonego.

Funkcja $T_E(x,t)$ spełnia równanie przewodnictwa (1) oraz jednorodne warunki brzegowe:

 $\left. \lambda \frac{\partial \mathbf{T}}{\partial \mathbf{x}} \right|_{-1} = \alpha_1 \, \mathbf{T}(-1, \mathbf{t}), \qquad (21)$

$$-\lambda \frac{\partial T}{\partial x}\Big|_{1} = \alpha_2 T(1,t).$$
 (22)

Funkcję $T_{N}(x)$ przewiduje się, ze względu na równanie (20), jako funkcję liniową typu

$$T_{N}(\mathbf{x}) = \mathbf{b} \, \mathbf{x} + \mathbf{c} \,. \tag{23}$$

Podstawienie (23) do równań (3) i (4) daje układ równań ze względu na stałe b i c:

$$(\lambda + \alpha_1 \mathbf{l}) \mathbf{b} - \alpha_1 \mathbf{c} = -\alpha_1 \mathbf{T}_1,$$

 $(\lambda + \alpha_2 \mathbf{l}) \mathbf{b} + \alpha_2 \mathbf{c} = \alpha_2 \mathbf{T}_2.$ (24)

Wyznaczenie z tego układu b i c oraz podstawienie ich do równania (23) przy przyjęciu oznaczeń:

Bi₁ =
$$\frac{\alpha_1 l}{\lambda}$$
, Bi₂ = $\frac{\alpha_2 l}{\lambda}$,

daje

(14')
$$T_N(x) = \frac{Bi_1Bi_2(T_2 - T_1)\frac{x}{1} + Bi_1T_1 + Bi_2T_2 + Bi_1Bi_2(T_1 + T_2)}{Bi_1 + Bi_2 + 2Bi_1Bi_2}$$

Wzór (14') podobnie jak identyczny z nim wzór (14) otrzymany metodą Laplace a przedstawia rozkład temperatury w stanie ustalonym.

Funkcję $\mathbb{T}_{E}(\mathbf{x},t)$ poszukuje się metodą rczdzielenia zmien- nych.

Poszukujemy funkcji

$$\mathbf{T}_{\mathbf{F}}(\mathbf{x},\mathbf{t}) = \mathbf{X}(\mathbf{x}) \mathbf{Y}(\mathbf{t}).$$
⁽²⁵⁾

Funkcja (25) musi spełniać równanie przewodnictwa (1) i stąd

$$\frac{X''(x)}{X(x)} = \frac{1}{a} \frac{Y'(t)}{Y(t)} = -\frac{\sigma^2}{1^2},$$

gdzie y jest wartością własną.

Otrzymuje się więc dwa równania:

$$X''(x) + \frac{\sigma^2}{1^2} X(x) = 0,$$
 (26)

$$Y'(t) + a \frac{s^2}{1^2} Y(t) = 0.$$
 (27)

Rozwiązaniem równania (26) jest funkcja

$$X(\mathbf{x}) = C \sin \frac{\sigma_{\mathbf{x}}}{1} + D \cos \frac{\sigma_{\mathbf{x}}}{1}, \qquad (28)$$

a równania (27) funkcja

$$Y(t) = E \exp \left(-\frac{r^2 a t}{1^2}\right).$$
 (29)

Poszukiwana funkcja T_F ma postać funkcji własnych rozpatrywanego zagadnienia po wprowadzeniu nowych stałych A i B

$$T_{F}(x,t) = (A \sin \frac{\partial x}{l} + B \cos \frac{\partial x}{l}) \exp - \frac{\gamma^{2}a t}{l^{2}}.$$
 (30)

Funkcja (30) musi spełniać jednorodne warunki brzegowe (21) i (22), co przy wykorzystaniu oznaczeń (9) pozwala otrzymać: $(\gamma \cos \gamma + \text{Bi}_1 \sin \gamma)A + (\gamma \sin \gamma - \text{Bi}_1 \cos \gamma)B = 0,$ (31) $(\gamma \cos \gamma + \text{Bi}_2 \sin \gamma)A - (\gamma \sin \gamma - \text{Bi}_2 \cos \gamma)B = 0.$ (32)

Warunkiem istnienia niezerowych wartości A i B, spełniających równania (31) i (32) jest, aby wyznacznik tego układu był zerem. Stąd otrzymuje się równanie na wartości własne, identyczne z równaniem (17)

$$\frac{r(\text{Bi}_1 + \text{Bi}_2)}{r^2 - \text{Bi}_1\text{Bi}_2} = tg \ 2r.$$
(33)

Każdej wartości własnej odpowiada funkcja własna, którą można zapisać następująco:

$$T_{Fn}(x,t) = A_{n}\left(\sin\frac{\tilde{\tau}_{n}x}{1} + \frac{B_{n}}{A_{n}}\cos\frac{\tilde{\tau}_{n}x}{1}\right)\exp\left(-\frac{\tilde{\tau}_{n}^{2}a t}{1^{2}}\right). \quad (34)$$

Z równania (31) wyznacza się

$$\frac{B_n}{A_n} = \frac{Bi_1 \sin \sigma_n + \sigma_n \cos \sigma_n}{Bi_1 \cos \sigma_n - \sigma_n \sin \sigma_n}.$$
 (35)

Funkcja $T_{E}(x,t)$ będzie sumą wszystkich funkcji własnych (34) $T_{Fn}(x,t)$

$$\mathbf{T}_{\mathbf{E}}(\mathbf{x},\mathbf{t}) = \sum_{n=1}^{\infty} \mathbf{A}_{n} \left(\sin \frac{\mathbf{J}_{n}\mathbf{x}}{1} + \frac{\mathbf{B}_{n}}{\mathbf{A}_{n}} \cos \frac{\mathbf{J}_{n}\mathbf{x}}{1} \right) \exp \left(- \frac{\mathbf{J}_{n}^{2}\mathbf{a} \cdot \mathbf{t}}{1^{2}} \right). \quad (36)$$

Współczynniki A_n znajduje się z warunku początkowego (2):

$$t = 0$$
 $T(x,0) = T_p(x) = T_N(x) + T_E(x,0),$

 $T_{E}(x,0) = T_{p}(x) - T_{N}(x),$

stąd jako współczynniki wyrazów szeregu Fouriera znajduje się

$$A_{n} = \frac{\int_{l}^{l} \left[T_{p}(\mathbf{x}) - T_{N}(\mathbf{x})\right] \left(\sin\frac{\sigma_{n}\mathbf{x}}{1} + \frac{B_{n}}{A_{n}}\cos\frac{\sigma_{n}\mathbf{x}}{1}\right) d\mathbf{x}}{\int_{l}^{l} \left(\sin\frac{\sigma_{n}\mathbf{x}}{1} + \frac{B_{n}}{A_{n}}\cos\frac{\sigma_{n}\mathbf{x}}{1}\right)^{2} d\mathbf{x}} .$$
(37)

$$W \text{ przypadku} \quad T_{p}(\mathbf{x}) = T_{p}$$

$$A_{n} = \frac{2(\mathcal{J}_{n}^{2} + \text{Bi}_{2}^{2})[(T_{p} - T_{1})\text{Bi}_{1}(\text{Bi}_{1} + \text{Bi}_{2}) + (T_{p} - T_{2})\text{Bi}_{2}(\mathcal{J}_{n}^{2} + \text{Bi}_{1}^{2}) \sin 2\mathcal{J}_{n}]}{\mathcal{J}_{n}^{2}(\text{Bi}_{1} + \text{Bi}_{2})[2(\mathcal{J}_{n}^{2} + \text{Bi}_{1}^{2})(\mathcal{J}_{n}^{2} + \text{Bi}_{2}^{2}) + (\text{Bi}_{1} + \text{Bi}_{2})(\mathcal{J}_{n}^{2} + \text{Bi}_{1}^{2}\text{Bi}_{2})]} .$$

• $(Bi_1 \cos \gamma_n - \gamma_n \sin \gamma_n)$. (38)

Korzystając z równań (19'), (14'), (36) i (38) otrzymuje się rozwiązanie zagadnienia (1) ÷ (4), które jest tożsamościowo identyczne ze wzorem (19) otrzymanym metodą Laplace a:

$$T(x,t) = \frac{(T_2 - T_1)Bi_1Bi_2 \frac{x}{1} + T_1Bi_1(1 + Bi_2) + T_2Bi_2(1 + Bi_1)}{Bi_1 + Bi_2 + 2Bi_1Bi_2} + \frac{\sum_{n \ge 1}^{\infty} \frac{2(\gamma_n^2 + Bi_2^2) [(T_p - T_1) Bi_1(Bi_1 + Bi_2) + (T_p - T_2)Bi_2(\gamma_n^2 + Bi_1^2)\sin 2\gamma_n]}{\gamma_n^2(Bi_1 + Bi_2) [(\gamma_n^2 + Bi_1Bi_2) + 2(\gamma_n^2 + Bi_1^2)(\gamma_n^2 + Bi_2^2)]} \cdot \frac{1}{2} \left\{ \frac{\sigma_n^2}{\sigma_n^2} \cos \left[\frac{\sigma_n}{\sigma_n^2} (1 + \frac{x}{1}) \right] + Bi_1 \sin \left[\frac{\sigma_n}{\sigma_n^2} (1 + \frac{x}{1}) \right] \right\} \exp(-\frac{\sigma_n^2}{\sigma_n^2} F_0), (39)$$

gdzie Fo = $\frac{at}{r^2}$ - liczba Fouriera.

Rozwiązania uzyskane metodami Laplace'a i Fouriera dają się sprowadzić do tego samego wzoru, przy wykorzystaniu wzoru (33) jako tożsamości.

Do obliczania temperatur przy użyciu maszyny cyfrowej, najwygodniej jest korzystać ze wzoru (39). Należy przy tym przewidzieć procedurę obliczania wartości własnych z na podstawie równania (33).

Równanie (33) można rozwiązać numerycznie metodą połowienia przedziału. Krańce przedziałów, w których należy poszukiwać pierwiastków, jak to wynika z rys.2, są wyznaczone przez pionowe asymptoty funkcji G(z) i H(z). Przecięcia tych funkcji, będących lewą i prawą stroną równania (33) wyznaczają wartości pierwiastków.

Rys.2. Wyznaczanie wartości y i przedziałów

Tablica I przedstawia obliczone pierwiastki z dla kombinacji wybranych wartości liczb Biota. Dla dużych liczb Fouriera (Fo > 0,1), występujący w rozwiązaniu, szereg jest szybkozbieżny i wystarczy korzystać z kilku wyrazów tego szeregu.

W podanych niżej przykładach, gdzie dokładność obliczeń wynosiła 0,02% maksymalnej różnicy temperatur dla liczb Fouriera około 0,01 należało korzystać z około 30 wartości. Ale i w tych przypadkach obliczenie temperatur w 10 przedziałach x dla 7 liczb Fouriera, łącznie z numerycznym obliczeniem pierwiastków 7, na maszynie cyfrowej Odra 1204 nie trwało dłużej niż kilkanaście minut. Należy przypuszczać, że wykorzystanie metod analitycznych do analizy niektórych zagadnień wymiany ciepła (np. obliczanie zmiennej temperatury powierzohni) może być bardziej efektywne od niektórych metod numerycznych.

Tablica 1

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bi1	Bi2	81	82	83	84	85	86	87
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,001	0,001	0,0316	1,5714	3.1419	4.7126	6.2833	7.8541	9 1219
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,001	0,01	0,0740	1,5743	3.1433	4.7136	6.2841	7.8547	9 4 254
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,001	0,1	0,2176	1,6023	3,1576	4.7231	6.2912	7.8604	9.4301
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,001	1	0,5391	1,8220	3,2893	4.8149	6.3612	7.9169	9.4774
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,001	10	0,7487	2,2460	3,7478	5,2559	6.7711	8.2933	9.8220
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,001	100	0,7821	2,3447	3,9076	5,4706	7,0335	8,5966	10,1596
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,001	1000	0,7856	2,3552	3,9252	5,4951	7,0651	8,6351	10,2051
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,01	0,01	0,0998	1,5771	3,1448	4,7145	6,2848	7,8553	9.4258
0,01 1 0,5451 1,8243 3,2906 4,8158 6,3619 7,9174 9,4779 9,011 10 0,7544 2,2479 3,7490 5,2568 6,7717 8,2938 9,8225 0,01 100 0,7913 2,3571 3,9263 5,4959 7,0658 8,6356 10,2056 0,01 1000 0,7913 2,3571 3,9263 5,4959 7,0658 8,6356 10,2056 0,01 1 0,01	0,01	0,1	0,2283	1,6050	3,1590	4,7240	6,2919	7,8610	9,4306
$ 0,01 \ \ 10 \ 0,7544 \ 2,2479 \ 3,7490 \ 5,2568 \ 6,7717 \ 8,2938 \ 9,8225 \ 0,01 \ 100 \ 0,7878 \ 2,3466 \ 3,9087 \ 5,4714 \ 7,0342 \ 8,5971 \ 10,1600 \ 0,01 \ 1000 \ 0,7913 \ 2,3571 \ 3,9263 \ 5,4959 \ 7,0658 \ 8,6356 \ 10,2056 \ 0,1 \ 10,1 \ 0,3111 \ 1,6320 \ 3,1731 \ 4,7335 \ 6,2991 \ 7,8667 \ 9,4354 \ 0,1 \ 1 \ 0,5985 \ 1,8461 \ 3,3037 \ 4,8249 \ 6,3689 \ 7,9231 \ 9,4826 \ 0,1 \ 1 \ 0,8068 \ 2,2668 \ 3,7604 \ 5,2650 \ 6,7781 \ 8,2990 \ 9,8269 \ 0,1 \ 100 \ 0,8404 \ 2,3655 \ 3,9202 \ 5,4795 \ 7,0405 \ 8,6023 \ 10,1644 \ 0,1 \ 1000 \ 0,8439 \ 2,3760 \ 3,9377 \ 5,5041 \ 7,0721 \ 8,6408 \ 10,2100 \ 1 \ 1 \ 0,8603 \ 2,0288 \ 3,4256 \ 4,9132 \ 6,4373 \ 7,9787 \ 9,5293 \ 1 \ 1 \ 1 \ 0,8603 \ 2,0288 \ 3,4256 \ 4,9132 \ 6,4373 \ 7,9787 \ 9,5293 \ 1 \ 1 \ 1 \ 0,8603 \ 2,0288 \ 3,4256 \ 4,9132 \ 6,4373 \ 7,9787 \ 9,5293 \ 1 \ 1 \ 1 \ 0,8603 \ 2,0288 \ 3,4256 \ 4,9132 \ 6,4373 \ 7,9787 \ 9,5293 \ 1 \ 1 \ 1 \ 0,9816 \ 1 \ 1 \ 0,9816 \ 1 \ 1 \ 0,9846 \ 1 \ 1 \ 0,9846 \ 1 \ 0,2803 \ 1 \ 0,9316 \ 1 \ 0,9316 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9346 \ 1 \ 0,9846 \ 1 \ 0,9846 \ 1 \ 0,9846 \ 1 \ 0,94154 \ 1 \ 0,9846 \ 1 \ 0,9846 \ 1 \ 0,94154 \ 0,9846 \ 1 \ 0,9846 \ 1 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,94154 \ 0,9846 \ 0,9846 \ 0,984$	0,01	1	0,5451	1,8243	3,2906	4,8158	6,3619	7,9174	9,4779
$ 0,01 \ 100 \ 0,7878 \ 2,3466 \ 3,9087 \ 5,4714 \ 7,0342 \ 8,5971 \ 10,1600 \ 0,7913 \ 2,3571 \ 3,9263 \ 5,4959 \ 7,0658 \ 8,6356 \ 10,2056 \ 0,1 \ 0,1 \ 0,3111 \ 1,6320 \ 3,1731 \ 4,7335 \ 6,2991 \ 7,8667 \ \ 9,4354 \ 0,1 \ 1 \ 0,5985 \ 1,8461 \ 3,3037 \ 4,8249 \ 6,3689 \ \ 7,9231 \ \ 9,4826 \ 0,1 \ 1 \ 0,8068 \ 2,2668 \ 3,7604 \ \ 5,2650 \ \ 6,7781 \ 8,2990 \ \ 9,8269 \ \ 0,1 \ 1 0 \ 0,8404 \ \ 2,3655 \ \ 3,9202 \ \ 5,4795 \ \ 7,0405 \ \ 8,6023 \ 10,1644 \ \ 0,1 \ 1 000 \ \ 0,8439 \ \ 2,3760 \ \ 3,9377 \ \ 5,5041 \ \ 7,0721 \ \ 8,6408 \ 10,2100 \ \ 1 \ \ 1 000 \ \ 0,8439 \ \ 2,3760 \ \ 3,9377 \ \ 5,5041 \ \ 7,0721 \ \ 8,6408 \ \ 10,2100 \ \ 1 \ \ 1 0,9840 \ \ 2,3655 \ \ 3,9202 \ \ 5,4795 \ \ 7,0405 \ \ 8,6023 \ \ 10,1644 \ \ \ 0,1 \ \ 1 000 \ \ 0,8439 \ \ 2,3760 \ \ 3,9377 \ \ 5,5041 \ \ 7,0721 \ \ 8,6408 \ \ 10,2100 \ \ 1 \ \ 1 1 000 \ \ 0,8439 \ \ 2,3760 \ \ 3,9377 \ \ 5,5041 \ \ 7,0721 \ \ 8,6408 \ \ 10,2100 \ \ 1 1 000 \ \ $	0,01	10	0,7544	2,2479	3,7490	5,2568	6,7717	8,2938	9,8225
0,01 1000 $0,7913$ $2,3571$ $3,9263$ $5,4959$ $7,0658$ $8,6356$ $10,2056$ $0,1$ $0,3111$ $1,6320$ $3,1731$ $4,7335$ $6,2991$ $7,8667$ $9,4354$ $0,1$ 1 $0,5985$ $1,8461$ $3,3037$ $4,8249$ $6,3689$ $7,9231$ $9,4826$ $0,1$ 10 $0,8068$ $2,2668$ $3,7604$ $5,2650$ $6,7781$ $8,2990$ $9,8269$ $0,1$ 100 $0,8404$ $2,3655$ $3,9202$ $5,4795$ $7,0405$ $8,6023$ $10,1644$ $0,1$ 1000 $0,8439$ $2,3760$ $3,9377$ $5,5041$ $7,0721$ $8,6408$ $10,2100$ 1 $10,8603$ $2,0288$ $3,4256$ $4,9132$ $6,4373$ $7,9787$ $9,5293$ 1 10 $1,1398$ $2,5316$ $4,0285$ $5,5590$ $7,1031$ $8,6537$ $10,2081$ 1 100 $1,1440$ $2,5423$ $4,0465$ $5,5580$ $7,1346$ $8,6923$ $10,2033$ 10 $1,4289$ $2,8628$ $4,3058$ $5,7606$ $7,2281$ $8,7083$ $10,2003$ 10 $1,4894$ $2,9818$ $4,4794$ $5,9837$ $7,4950$ $9,0131$ $10,5373$ 10 100 $1,5552$ $3,1105$ $4,6658$ $6,2211$ $7,7764$ $9,3317$ $10,8871$ 1000 $1,5622$ $3,1385$ $4,7077$ $6,2769$ $7,8461$ $9,4154$ $10,9846$	0,01	100	0,7878	2,3466	3,9087	5,4714	7,0342	8,5971	10,1600
0,10,10,31111,63203,17314,73356,29917,86679,43540,110,59851,84613,30374,82496,36897,92319,48260,1100,80682,26683,76045,26506,77818,29909,82690,11000,84042,36553,92025,47957,04058,602310,16440,110000,84392,37603,93775,50417,07218,640810,2100110,86032,02883,42564,91326,43737,97879,52931101,09962,43203,86895,34486,84128,35119,871211001,13982,53164,02855,55907,10318,653710,2081110001,14402,54234,04655,58367,13468,692310,253710101,42892,86284,30585,76067,22818,708310,200310101,49582,99464,49886,00967,52769,052410,58341001001,55523,11054,66586,22117,77649,331710,88711001001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	0,01	1000	0,7913	2,3571	3,9263	5,4959	7,0658	8,6356	10,2056
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1	0,1	0,3111	1,6320	3,1731	4,7335	6,2991	7,8667	9.4354
0,110 $0,8068$ $2,2668$ $3,7604$ $5,2650$ $6,7781$ $8,2990$ $9,8269$ $0,1$ 100 $0,8404$ $2,3655$ $3,9202$ $5,4795$ $7,0405$ $8,6023$ $10,1644$ $0,1$ 1000 $0,8439$ $2,3760$ $3,9377$ $5,5041$ $7,0721$ $8,6408$ $10,2100$ 1 $1,08603$ $2,0288$ $3,4256$ $4,9132$ $6,4373$ $7,9787$ $9,5293$ 1 10 $1,0996$ $2,4320$ $3,8689$ $5,3448$ $6,8412$ $8,3511$ $9,8712$ 1 100 $1,1398$ $2,5316$ $4,0285$ $5,5590$ $7,1031$ $8,6537$ $10,2081$ 1 100 $1,1440$ $2,5423$ $4,0465$ $5,5836$ $7,1346$ $8,6923$ $10,2537$ 10 100 $1,4894$ $2,9818$ $4,4794$ $5,9837$ $7,4950$ $9,0131$ $10,5373$ 10 100 $1,4958$ $2,9946$ $4,4988$ $6,0096$ $7,5276$ $9,0524$ $10,5834$ 100 $1,5552$ $3,1105$ $4,6658$ $6,2211$ $7,7764$ $9,3317$ $10,8871$ 100 $1,5622$ $3,1385$ $4,7077$ $6,2769$ $7,8461$ $9,4154$ $10,9846$	0,1	1	0,5985	1,8461	3,3037	4,8249	6,3689	7,9231	9,4826
0,11000,84042,36553,92025,47957,04058,602310,16440,110000,84392,37603,93775,50417,07218,640810,2100110,86032,02883,42564,91326,43737,97879,52931101,09962,43203,86895,34486,84128,35119,871211001,13982,53164,02855,55907,10318,653710,2081110001,14402,54234,04655,58367,13468,692310,253710101,42892,86284,30585,76067,22818,708310,2003101001,48942,98184,47945,98377,49509,013110,5373101001,49582,99464,49886,00967,52769,052410,58341001001,55523,11054,66586,22117,77649,331710,887110010001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	0,1	10	0,8068	2,2668	3,7604	5,2650	6,7781	8,2990	9,8269
0,110000,84392,37603,93775,50417,07218,640810,2100110,86032,02883,42564,91326,43737,97879,52931101,09962,43203,86895,34486,84128,35119,871211001,13982,53164,02855,55907,10318,653710,208111001,14402,54234,04655,58367,13468,692310,253710101,42892,86284,30585,76067,22818,708310,20031010,48942,98184,47945,98377,49509,013110,5373101001,49582,99464,49886,00967,52769,052410,58341001001,55523,11054,66586,22117,77649,331710,88711001001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	0,1	100	0,8404	2,3655	3,9202	5,4795	7,0405	8,6023	10,1644
110,86032,02883,42564,91326,43737,97879,52931101,09962,43203,86895,34486,84128,35119,871211001,13982,53164,02855,55907,10318,653710,2081110001,14402,54234,04655,58367,13468,692310,253710101,42892,86284,30585,76067,22818,708310,200310101,48942,98184,47945,98377,49509,013110,5373101001,49582,99464,49886,00967,52769,052410,58341001001,55523,11054,66586,22117,77649,331710,88711001001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	0,1	1000	0,8439	2,3760	3,9377	5,5041	7,0721	8,6408	10,2100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	0,8603	2,0288	3,4256	4,9132	6,4373	7.9787	9.5293
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	10	1,0996	2,4320	3,8689	5,3448	6,8412	8.3511	9.8712
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	100	1,1398	2,5316	4,0285	5,5590	7,1031	8,6537	10.2081
10101,42892,86284,30585,76067,22818,708310,2003101001,48942,98184,47945,98377,49509,013110,53731010001,49582,99464,49886,00967,52769,052410,58341001001,55523,11054,66586,22117,77649,331710,887110010001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	1	1000	1,1440	2,5423	4,0465	5,5836	7,1346	8,6923	10,2537
101001,48942,98184,47945,98377,49509,013110,53731010001,49582,99464,49886,00967,52769,052410,58341001001,55523,11054,66586,22117,77649,331710,887110010001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	10	10	1,4289	2,8628	4,3058	5,7606	7,2281	8.7083	10,2003
1010001,49582,99464,49886,00967,52769,052410,58341001001,55523,11054,66586,22117,77649,331710,887110010001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	10	100	1,4894	2,9818	4,4794	5,9837	7,4950	9,0131	10.5373
1001001,55523,11054,66586,22117,77649,331710,887110010001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	10	1000	1,4958	2,9946	4,4988	6,0096	7,5276	9,0524	10,5834
10010001,56223,12444,68666,24897,81119,373410,9356100010001,56923,13854,70776,27697,84619,415410,9846	100	100	1,5552	3,1105	4,6658	6,2211	7,7764	9,3317	10.8871
1000 1000 1,5692 3,1385 4,7077 6,2769 7,8461 9,4154 10,9846	100	1000	1,5622	3,1244	4,6866	6,2489	7,8111	9,3734	10,9356
	1000	1000	1,5692	3,1385	4,7077	6,2769	7,8461	9,4154	10,9846

١.

Rysunki 3 ÷ 7 ilustrują przykłady wyliczonych przebiegów temperatur.

Rys.3a przedstawia rozwiązanie metodą ogólną przypadku uproszczonego, gdy $T_1 = T_2 = 0$ i Bi₁ = Bi₂ = 1, przy czym * krzywe na nim przedstawione pozwalają potwierdzić prawidłowe działanie programu obliczeniowego.

Uzyskane wyniki są identyczne z podawanymi dotychczas w literaturze, np. praca [3].

Najciekawszy przypadek przedstawia rys.7a. W lewej części (x < -0,2) płyta nagrzewa się od temperatury początkowej $T_p = \frac{1}{2}(T_1 + T_2)$ do temperatury maksymalnej dla Fo ≈ 1 , a następnie obniża się do temperatury stanu ustalonego (Fo ≥ 10).

Występujące zafalowanie temperatury jest spowodowane niesymetrycznymi wartościami liczb Biota w stosunku do początkowych różnic temperatur $(T_1 - T_p)$ i $(T_2 - T_p)$.

Nie da się tego typu analiz przeprowadzać na samym rozwiązaniu (wzór (39)). Uzyskane analitycznie rozwiązanie może być analizowane dla poszczególnych przypadków na wykresach dla obliczonych temperatur (podobnie jak w metodach numerycznych).

To jednak stosowanie metod analitycznych w pewnych przypadkach może okazać się korzystniejsze ze względu na prostotę programu obliczeniowego na EMC i szybkość obliczeń.

BIBLIOGRAFIA

 Carslaw H.S., Jaeger I.C: Conduction of Heat in Solids. Oxford University Press, Oxford 1959.
 I y k ow A.W.: Tieorija tiepłoprowodnosti. Wyższa Szkoła. Moskwa 1967.
 G ogół W.: Wymiana ciepła - tablice i wykresy. WPW. Warszawa 1975.

ПРОБЛЕМЫ НЕУСТАНОВИВШЕЙСЯ ТЕПЛОПРОВОДНОСТИ В НЕОГРАНИЧЕННОЙ ПЛАСТИНЕ С НЕСИММЕТРИЧНЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ 3-го РОДА

Краткое содержание

В работе приводится аналитическое решение проблемы неустановившейся теплопроводности в пластине для случая несимметричных граничных условий 3-го рода. Были получены эквивалентные решения по методу Лапласа и Фурье. Приводятся температурные графики для нескольких выбранных примеров, полученные при помощи электронно-вычислительной машины.

UNSTEADY HEAT CONDUCTION IN A PLATE WITH BOUNDARY CONDITIONS OF THE 3-rd KIND

Summary

Problem of unsteady heat conduction in a plate is considered. Third-kind boundary conditions are taken into account. Solutions using the Laplace as well as the Fourier method are given. Results of computer calculations of temperature history are presented.