(0553) A Survey on High Frequency Inverter and Their Power Control Techniques for Induction Heating Applications

ANAND KUMAR, Moumita Sadhu, Dr. Niladri Das, Pradip Kumar Sadhu, Debabrata Roy, Dr. Ankur Ganguly


Intensive use of induction heating technology can be seen in many areas such as industrial, domestic and medical applications. With the evolution of high frequency switches, the design of high frequency inverter become easy, which is the key element of induction heating technology. It has been seen that the control of output power in high frequency inverter for induction heating application is complex. However, importance of IH technology is not widespread in the globe.

In induction heating technology, accurate output power and current control are required with appropriate dynamics. Regarding designing of high frequency inverter for IH (Induction Heating) application, number of power control technique has been discussed. In this paper, a comprehensive review of different power control techniques for IH application has been incorporated regarding high frequency inverter for modern IH applications (domestic & industrial). 

Full Text:



Mühlbauer,A.: ‘History of Induction Heating and Melting. Essen’ (Vulkan-Verlag, 2008)

Stauffer, P.R., Cetas, T.C., Jones, R.C.: ‘Magnetic Induction Heating of Ferromagnetic Implants for Inducing Localized Hyperthermia in Deep-Seated Tumors’IEEE Trans. Biomed. Eng., 1984, BME-31, (2), pp. 235–251.

Moreland, W.C.: ‘The induction range: Its performance and its development problems’IEEE Trans. Ind. Appl., 1973, 1A–9, (1), pp. 81–85.

Mühlbauer, A.: ‘History of Induction Heating and Melting. Essen’ (Vulkan-Verlag, 2008)

Lucía, O., Maussion, P., Dede, E., Burdío, J.M.: ‘Induction heating technology and its applications: Past Developments, current Technology, and future challenges’IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 2509–2520.

Dawson, F.P., Jain, P.: ‘A Comparison of Load Commutated Inverter Systems for Induction Heating and Melting Applications’IEEE Trans. Power Electron., 1991, 6, (3), pp. 430–441.

Koertzen, H.W., Van Wyk, J.D., Ferreira, J.A.: ‘Design of the half-bridge series resonant converters for induction cooking’IEEE Power Electron. Spec. Conf. Rec., 1995, pp. 729–735.

Kamli, M., Yamamoto, S., Abe, M.: ‘A 50-150 kHz half-bridge inverter for induction heating applications’IEEE Trans. Ind. Electron., 1996, 43, (1), pp. 163–172.

Young-Sup, K., Sang-Bong, Y., Dong-Seok, H.: ‘Half-bridge series resonant inverter for induction heating applications with load-adaptive PFM control strategy’IEEE Appl. Power Electron. Conf. Expo., 1999, 1, pp. 575–581.

Koertzen, H.W., Ferreira, J.A., Van Wyk, J.D.: ‘A comparative study of single switch induction heating converters using novel component effectivity concepts’IEEE Power Electron. Spec. Conf., 1992, 1, pp. 298–305.

Sarnago, H., Lucía, Ó., Pérez-Tarragona, M., Burdío, J.M.: ‘Dual-Output Boost Resonant Full-Bridge Topology and its Modulation Strategies for High-Performance Induction Heating Applications’IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 3554–3561.

Sarnago, H. ; Lucia, O. ; Mediano, A. ; Burdio, J.M.: ‘Direct AC – AC Resonant Boost Converter for efficient domestic induction heating applications’IEEE Trans. Power Electron., 2014, 29, (3), pp. 1128–1139.

Roy,P.P., Doradla,S. R., and Deb,S.: ‘Analysis of the series resonant converter using a frequency domain model’IEEE/PESC Rec, 1991, pp. 482–489.

Bhat, A.K.S.: ‘Fixed-Frequency PWM Series-Parallel Resonant Converter’IEEE Trans. Ind. Appl., 1992, 28, (5), pp. 1002–1009.

Grajales, L., Sabatk, J.A., Wang, K.R., Tabisz, W.A., Lee, F.C.: ‘Design of a 10kW, 500kHz Phase-Shift Controlled Series-Resonant Inverter for Induction Heating’IEEE/ZAS Annu. Meet, 1993, pp. 843–849.

Cho, W.H.K. and G.H.: ‘Modified Quantum and Phase Control of series resonant converter’ZEEWPESC Rec, 1991, pp. 498–503.

Fujita, H., Akagi, H.: ‘Pulse-Density-Modulated Power Control of a 4 kW, 450 kHz Voltage-Source Inverter for Induction Melting Applications’Ieee Trans. Ind. Appli’Cations, 1996, 32, (2), pp. 279–286.

Burdío, J.M., Barragán, L.A., Monterde, F., Navarro, D., Acero, J.: ‘Asymmetrical voltage-cancellation control for full-bridge series resonant inverters’IEEE Trans. Power Electron., 2004, 19, (2), pp. 461–469.

Davies,E J., and Simpson,P.: ‘Induction Heating Handbook’ (London; New York : McGraw-Hill,1979)

Hediehloo, M., Akhbari, M.: ‘New approach in design of planar coil of induction cooker based on skin and proximity effects analysis’Proc. IEEE Int. Conf. Ind. Technol., 2009, pp. 1–6.

'Induction Heating System Topology Review', http://www.induksiyonx.com/FileUpload/bs736485/File/an-9012.pdf

Fernández, O., Delgado, J., Martínez, F., Correa, J., Heras, M.: ‘Design and Implementation of a 120A Resonant Inverter for Induction Furnace .’, in ‘Power, Electronics and Computing (ROPEC), 2013 IEEE International Autumn’ (2013), pp. 5–10

Shenkman, A., Axelrod, B., and Berkovich, Y.: ‘Single-switch AC AC converter with high power factor and soft commutation for induction heating applications’IEE Proc.-Electr. Power Appl, 2001, 148, (6), pp. 469–474.

Shenkman, A., Axelrod, B., and Berkovich, Y.: ‘Improved modification of the single-switch AC-AC converter for induction heating applications’IIEE Proc.-Electr. Power Appl, 2004, 151, (1), pp. 1–4.

Yongyuth,N.,Viriya, P., and Matsuse, K.: ‘Analysis of a Full-Bridge Inverter for Induction Heating Using Asymmetrical Phase-Shift Control under ZVS and NON-ZVS Operation’, in ‘2007 7th International Conference on Power Electronics and Drive Systems’ (2007), pp. 476–482

Wang,C.-M.,Chiu,H.-J., and Chen,D.-R.: ‘Novel zero-current-switching (ZCS) PWM converters’IEE Proc.-Electr. Power Appl, 2005, 152, (2), pp. 407–415.

Park, N.J., Lee, D.S., Hyun, D.Y.: ‘A power-control scheme with constant switching frequency in class-D inverter for induction-heating jar application’IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 1252–1260.

Faucher,S., Forest,F., Gaspard,J.-Y., Huselstein,J.-J., Joubert,C., and Montloup, D.: ‘Frequency-synchronized resonant converters for the supply of multiwinding coils in induction cooking appliances’IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 441–452.

Savary,P., Nakaoka,M., and Maruhashi, T.: ‘A High-Frequency Resonant Inverter Using Current-Vector Control Scheme and Its Performance Evaluations’IEEE Trans. Ind. Electron, 1987, IE-34, (2), pp. 247–256.

Shenkman,A., Axelrod,B., and Chudnovsky, V.: ‘A New Simplified Model of the Dynamics of the Current-Fed Parallel Resonant Inverter’IEEE Trans. Ind. Electron, 2000, 47, (2), pp. 282–286.

Shenkman, A., Axelrod, B., Chudnovsky, V.: ‘Assuring continuous input current using a smoothing reactor in a thyristor frequency converter for induction metal melting and heating applications’IEEE Trans. Ind. Electron., 2001, 48, (6), pp. 1290–1292.

Steigerwald, R.L.: ‘A comparison of half-bridge resonant converter topologies’IEEE Trans. Power Electron., 1988, 3, (2), pp. 174–182.

Esteve, V., Sanchis-Kilders, E., Jordán, J., et al.: ‘Improving the efficiency of IGBT series-resonant inverters using pulse density modulation’IEEE Trans. Ind. Electron., 2011, 58, (3), pp. 979–987.

Lucía, O., Burdío, J.M., Millán, I., Acero, J., Barragán, L.A.: ‘Efficiency-oriented design of ZVS half-bridge series resonant inverter with variable frequency duty cycle control’IEEE Trans. Power Electron., 2010, 25, (7), pp. 1671–1674.

Espi, J.M., Dede, E.J., Navarro, E., Sanchis, E., Ferreres, A.: ‘Features and design of the voltage-fed L-LC resonant inverter for induction heating’PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., 1999, 2, (3), pp. 1126–1131.

Espi ,J. M., and Dede,E. J.: ‘Design considerations for three element L-LC resonant inverters for induction heating’IInt. J. Electron.—Power Electron. Technol., 1999, 86, (10), pp. 1205–1216.

Espi, J.M., Navarro, A.E., Maicas, J., Ejea, J., Casans, S.: ‘Control circuit design of the L-LC resonant inverter for induction heating’2000 IEEE 31st Annu. Power Electron. Spec. Conf. Conf. Proc. (Cat. No.00CH37018), 2000, 3, pp. 1430–1435.

Espí,J., Dede,E., Ferreres,A., and Garcia, R.: ‘Steady-state frequency analysis of the L-LC resonant inverter for induction heating’Proc. IEEE Int. Power Electron. Congr. (CIEP), Cuernavaca, Mex., 1996, pp. 22–28.

Huerta, J.M.E., Dede, E.J., Santamaría, G., Gil, R.G., Moreno, J.C.: ‘Design of the L - LC Resonant Inverter for Induction Heating Based on Its Equivalent SRI’IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 3178–3187.

Lucía, Ó., Burdío, J.M., Barragán, L.A., Acero, J., Millán, I.: ‘Series-resonant multiinverter for multiple induction heaters’IEEE Trans. Power Electron., 2010, 25, (11), pp. 2860–2868.

Burdío, J.M., Monterde, F., García, J.R., Barragán, L.A., Martínez, A.: ‘A two-output series-resonant inverter for induction-heating cooking appliances’IEEE Trans. Power Electron., 2005, 20, (4), pp. 815–822.

Perez-Tarragona,M., Sarnago,H.,Lucia, O., and Burdío,J.M.: ‘Series Resonant Multi-Inverter Prototype for Domestic Induction Heating’IECON2015-Yokohama, 2015, pp. 5444–5449.

Jung, Y.-C.: ‘Dual half bridge series resonant inverter for induction heating appliance with two loads’Electron. Lett., 1999, 35, (16), pp. 1345–1346.

Forest, F., Labouré, E., Costa, F., Gaspard, J.Y.: ‘Principle of a multi-load/single converter system for low power induction heating’IEEE Trans. Power Electron., 2000, 15, (2), pp. 223–230.

Nguyen-Quang,N., Stone, D. A., Bingham, C. M., and Foster, M. P. :‘Single phase matrix converter for radio frequency induction heating’Int. Symp. Power Electron. Electr. Drives, Autom. Motion, 2006. SPEEDAM 2006, 2006, pp. 614–618.

Sugimura, H., Mun, S.P., Kwon, S.K., Mishima, T., Nakaoka, M.: ‘High-frequency resonant matrix converter using one-chip reverse blocking IGBT-based bidirectional switches for induction heating’IEEE Int. Symp. Ind. Electron., 2008, pp. 3960–3966.

Sarnago, H., Mediano, A., Lucia, Ó.: ‘High efficiency AC-AC power electronic converter applied to domestic induction heating’IEEE Trans. Power Electron., 2012, 27, (8), pp. 3676–3684.

Rodríguez, J., Lai, J.S., Peng, F.Z.: ‘Multilevel inverters: A survey of topologies, controls, and applications’IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724–738.

Sheng Lai, J., and Zheng Peng, F. : ‘Multilevel converters-a new breed of power converters’IEEE Trans Ind. Electron., 1996, 32, (3), pp. 509–517.

Adam, G.P., Finney, S.J., Massoud, A.M., Williams, B.W.: ‘Capacitor balance issues of the diode-clamped multilevel inverter operated in a quasi two-state mode’IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 3088–3099.

Qingfeng, L., Huamin, W., Zhaoxia, L.: ‘Discuss on the Application of Multilevel Inverter in High Frequency Induction Heating Power Supply’, in ‘TENCON IEEE Region 10 Conference’ (2006), pp. 1–4

Rodriguez, J.I., Leeb, S.B.: ‘A multilevel inverter topology for inductively coupled power transfer’IEEE Trans. Power Electron., 2006, 21, (6), pp. 1607–1617.

Nagarajan, B., Sathi, R.R.: ‘Phase locked loop based pulse density modulation scheme for the power control of induction heating applications’J. Power Electron., 2015, 15, (1), pp. 65–77.

Lucia, O., Carretero, C., Palacios, D., Valeau, D., Burdio, J.M.: ‘Configurable snubber network for efficiency optimisation of resonant converters applied to multi-load induction heating’Electron. Lett., 2011, 47, (17), pp. 989–991.

Ahmed, N. A. and Nakaoka, M.: ‘Boost-half-bridge edge resonant soft switching PWM high-frequency inverter for consumer induction heating appliances’IEE Proceedings-Electric Power Appl., 2006, 153, (6), pp. 932–938.

Sarnago, H., Lucía, Ó., Mediano, A., Burdío, J.M.: ‘Class-D/DE dual-mode-operation resonant converter for improved-efficiency domestic induction heating system’IEEE Trans. Power Electron., 2013, 28, (3), pp. 1274–1285.

Ngoc, H.P., Fujita, H., Ozaki, K., Uchida, N.: ‘Phase angle control of high-frequency resonant currents in a multiple inverter system for zone-control induction heating’IEEE Trans. Power Electron., 2011, 26, (11), pp. 3357–3366.

Carretero, C., Lucía, O., Acero, J., Burdío, J.M.: ‘Phase-shift control of dual half-bridge inverter feeding coupled loads for induction heating purposes’Electron. Lett., 2011, 47, (11), pp. 670–671.

Kazimierczuk, M.K., Jutty, M.K.: ‘Fixed-Frequency Phase-Controlled Full-Bridge Resonant Converter With a Series Load’IEEE Trans. Power Electron., 1995, 10, (1), pp. 9–18.

Kifune, H., Hatanaka,Y.and Nakaoka, M. .:‘Cost effective phase shifted pulse modulation soft switching high frequency inverter for induction heating applications’, in ‘IEE Proceedings-Electric Power Applications’ (2004), pp. 19–25

Chenand, B.Y., and Lai, Y.S.: ‘Switching Control Technique of Phase-Shift- Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby Conditions Without Additional Auxiliary Components’IEEE Trans. Power Electron., 2010, 25, (4), pp. 1001–1012.

Imbertson, P., Mohan, N.: ‘Asymmetrical duty cycle permits zero switching loss in PWM circuits with no conduction loss penalty’IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 121–125.

Mohan, P.I. and N.: ‘New PWM converter circuits combining zero switching loss with low conduction loss’Telecommun. Energy Conf. 1990. INTELEC ’90., 12th Int., 1990, pp. 179–185.

Yachiangkam, S., Sangswang, A., Naetiladdanon, S., Koompai, C., Chudjuarjeen, S.: ‘Resonant inverter with a variable-frequency asymmetrical voltage-cancellation control for low Q-factor loads in induction cooking’Proc. 2011 14th Eur. Conf. Power Electron. Appl., 2011, (0), pp. 1–10.

Hosseini, S.H., Goharrizi, A.Y., Karimi, E.: ‘A multi-output series resonant inverter with asymmetrical voltage-cancellation control for induction-heating cooking appliances’, in ‘Conference Proceedings - IPEMC 2006: CES/IEEE 5th International Power Electronics and Motion Control Conference’ (2006), pp. 1–6

Jittakort, J., Chudjuarjeen, S., Sangswang, A., Naetiladdanon, S., Koompai, C.: ‘A dual output series resonant inverter with improved asymmetrical voltage-cancellation control for induction cooking appliance’IECON Proc. (Industrial Electron. Conf., 2011, pp. 2520–2525.

Barragán, L.A., Burdío, J.M., Artigas, J.I., Navarro, D., Acero, J., Puyal, D.: ‘Efficiency optimization in ZVS series resonant inverters with asymmetrical voltage-cancellation control’IEEE Trans. Power Electron., 2005, 20, (5), pp. 1036–1044.

Ahmed, N.A.: ‘High-frequency soft-switching AC conversion circuit with dual-mode PWM/PDM control strategy for high-power IH applications’IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 1440–1448.

Akagi, H.F. and H.: ‘Control and performance of a pulse-density-modulated series-resonant inverter for corona discharge processes’IEEE Trans. Ind. Appl., 1999, 35, (3), pp. 621–627.

Lucia, O., Burdio, J. M., Millan, I., Acero, J., and Puyal, D.: ‘Load-adaptive control algorithm of half-bridge series resonant inverter for domestic induction heating’Int. Symp. Heat. by Electromagn. Sources, 2009, 56, (8), pp. 3106–3116.

Shah, S., and Upadhyay, A. K. :‘Analysis and design of a half bridge parallel resonant converter operating in discontinuous mode’, in ‘Applied Power Electronics Conference and Exposition, 1990. APEC ’90, Conference Proceedings 1990., Fifth Annual’ (1990), pp. 165–174

Belaguli, V., Bhat, A.K.S.: ‘Series-parallel resonant converter operating in discontinuous current mode. Analysis, design, simulation, and experimental results’IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 2000, 47, (4), pp. 433–442.

Millán, I., Puyal, D., Burdío, J.M., Bernal, C., Acero, J.: ‘Improved performance of half-bridge series resonant inverter for induction heating with discontinuous mode control’Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, 2007, pp. 1293–1298.

Tian, J., Berger, G., Riemann, T., Scherf, M., and Petzoldt, J.: ‘A half bridge series resonant inverter for induction cookers using a novel FPGA based control strategy’Power Electron. Appl. Eur. Conf., 2005, pp. 1–9.

Pham, H.N., Fujita, H., Ozaki, K., Uchida, N.: ‘Dynamic analysis and control for resonant currents in a zone-control induction heating system’IEEE Trans. Power Electron., 2013, 28, (3), pp. 1297–1307.

Egalon, J., Caux, S., Maussion, P., Souley, M., Pateau, O.: ‘Multiphase system for metal disc induction heating: Modeling and RMS current control’IEEE Trans. Ind. Appl., 2012, 48, (5), pp. 1692–1699.

Cano, M. E., Barrera, A., Estrada,J. C., Hernandez A., and Cordova, T.: ‘An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements’Rev. Sci. Instrum, 2011, 82, (11), pp. 114904–1–114904–6.

Paesa, D., Franco, C., Llorente, S., López-Nicolás, G., Sagüés, C.: ‘Adaptive simmering control for domestic induction cookers’IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 2257–2267.

Long, N.K., Caux, S., Kestelyn, X., Pateau, O., Maussion, P.: ‘Resonant control of multi-phase induction heating systems’IECON Proc. (Industrial Electron. Conf., 2012, pp. 3293–3298.

Domínguez, A., Barragan, L.A., Otín, A., Navarro, D., Puyal, D.: ‘Inverse-based power control in domestic induction heating applications’IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 2612–2621.

Artigas,J.I.,Urriza,I.,Acero, J., Barragan,L. A., Navarro,D., and Burdio, J.M. : ‘Power measurement by output-current integration in series resonant inverters’IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 559–567.

Navarro,D., Lucia,O., Barragan,L. A., Urriza,I., and Jiménez, O.: ‘High-level synthesis for accelerating the FPGA implementation of computationally-demanding control algorithms for power converters’IEEE Trans. Ind. Informatics, 2013, 9, (3), pp. 1371–1379.

Lucía, Ó., Barragán, L.A., Burdío, J.M., Jiménez, Ó., Navarro, D., Urriza, I.: ‘A versatile power electronics test-bench architecture applied to domestic induction heating’IEEE Trans. Ind. Electron., 2011, 58, (3), pp. 998–1007.

Navarro, D., Lucía, Ó., Barragán, L.A., Artigas, J.I., Urriza, I., Jiménez, Ó.: ‘Synchronous FPGA-based high-resolution implementations of digital pulse-width modulators’IEEE Trans. Power Electron., 2012, 27, (5), pp. 2515–2525.

Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Mattavelli, P., Boroyevich, D.: ‘An FPGA-based gain-scheduled controller for resonant converters applied to induction cooktops’IEEE Trans. Power Electron., 2014, 29, (4), pp. 2143–2152.


  • There are currently no refbacks.