A Survey on High-Frequency Inverter and Their Power Control Techniques for Induction Heating Applications

Anand Kumar, Moumita Sadhu, Niladri Das, Pradip Kumar Sadhu, Debabrata Roy, Ankur Ganguly

Abstract


Intensive use of induction heating (IH) technology can be seen in many areas such as industrial, domestic and medical
applications. The evolution of high-frequency switches has facilitated the design of high-frequency inverters, the key element
of induction heating technology. Controling output power in a high-frequency inverter for induction heating application is
complex. However, the importance of IH technology is not widespread. Induction heating technology requires accurate output
power and current control with appropriate dynamics. Several power control techniques have been discussed inrelation to
designing high-frequency inverters for IH applications. This paper makes a comprehensive review of the various power control
techniques regarding high-frequency inverters for modern IH applications (domestic & industrial).


Full Text:

PDF

References


A. Arteconi, C. Brandoni, F. Polonara, Distributed generation and trigeneration:

Energy saving opportunities in italian supermarket sector,

Applied Thermal Engineering 29 (8) (2009) 1735–1743.

P. R. Stauffer, T. C. Cetas, R. C. Jones, Magnetic induction heating

of ferromagnetic implants for inducing localized hyperthermia in

deep-seated tumors, IEEE Transactions on Biomedical Engineering (2)

(1984) 235–251.

W. Moreland, The induction range: Its performance and its development

problems, IEEE Transactions on Industry Applications (1) (1973)

–85.

A. Chakraborty, D. Roy, P. K. Sadhu, A. Ganguly, A. Banerjee, (0549)

an interference of high frequency series resonant inverter in domestic

induction heater estimation in emission control using fem, Journal of

Power Technologies.

D. Roy, A. Naskar, P. K. Sadhu, A mathematical analysis of two dimensional

steady state heat conduction in the coil of an induction heater

using finite element method, J. Power Technol.

A. MÜHLBAUER, History of induction heating and melting. essen:

Vulkan, c2008, x, 202 p, Tech. rep., ISBN 38-027-2946-3.

O. Lucía, P. Maussion, E. J. Dede, J. M. Burdío, Induction heating

technology and its applications: past developments, current technology,

and future challenges, IEEE Transactions on Industrial Electronics

(5) (2014) 2509–2520.

F. P. Dawson, P. Jain, A comparison of load commutated inverter systems

for induction heating and melting applications, IEEE Transactions

on Power Electronics 6 (3) (1991) 430–441.

H.W. Koertzen, J. D. VanWyk, J. A. Ferreira, Design of the half-bridge,

series resonant converter for induction cooking, in: Power Electronics

Specialists Conference, 1995. PESC’95 Record., 26th Annual IEEE,

Vol. 2, IEEE, 1995, pp. 729–735.

M. Kamli, S. Yamamoto, M. Abe, A 50-150 khz half-bridge inverter for

induction heating applications, IEEE Transactions on Industrial Electronics

(1) (1996) 163–172.

Y.-S. Kwon, S.-B. Yoo, D.-S. Hyun, Half-bridge series resonant inverter

for induction heating applications with load-adaptive pfm control strategy,

in: Applied Power Electronics Conference and Exposition, 1999.

APEC’99. Fourteenth Annual, Vol. 1, IEEE, 1999, pp. 575–581.

H. Koertzen, J. Ferreria, J. Van Wyk, A comparative study of single

switch induction heating converters using novel component effectivity

concepts, in: Power Electronics Specialists Conference, 1992.

PESC’92 Record., 23rd Annual IEEE, IEEE, 1992, pp. 298–305.

J. M. Burdio, L. A. Barragan, F. Monterde, D. Navarro, J. Acero, Asymmetrical

voltage-cancellation control for full-bridge series resonant inverters,

IEEE Transactions on Power Electronics 19 (2) (2004) 461–

J. Davies, P. Simpson, Induction heating handbook, McGraw-Hill Companies,

H. Sarnago, Ó. Lucía, M. Pérez-Tarragona, J. M. Burdío, Dual-output

boost resonant full-bridge topology and its modulation strategies for

high-performance induction heating applications, IEEE Transactions

on Industrial Electronics 63 (6) (2016) 3554–3561.

H. Sarnago, O. Lucia, A. Mediano, J. M. Burdio, Direct ac–ac resonant

boost converter for efficient domestic induction heating applications,

IEEE Transactions on Power Electronics 29 (3) (2014) 1128–1139.

P. P. Roy, S. Doradla, S. Deb, Analysis of the series resonant converter

using a frequency domain model, in: Power Electronics Specialists

Conference, 1991. PESC’91 Record., 22nd Annual IEEE, IEEE, 1991,

pp. 482–489.

A. Bhat, Fixed frequency pwm series-parallel resonant converter,

in: Industry Applications Society Annual Meeting, 1989., Conference

Record of the 1989 IEEE, IEEE, 1989, pp. 1115–1121.

L. Grajales, J. Sabate, K. Wang, W. Tabisz, F. Lee, Design of a 10

kw, 500 khz phase-shift controlled series-resonant inverter for induction

heating, in: Industry Applications Society Annual Meeting, 1993.,

Conference Record of the 1993 IEEE, IEEE, 1993, pp. 843–849.

J. Milewski, W. Bujalski, M. Wolowicz, K. Futyma, J. Kucowski, Offdesign

operation of an 900 mw-class power plant with utilization of low

temperature heat of flue gases, Journal of Power Technologies 95 (3)

(2015) 221.

M. Wolowicz, J. Milewski, K. Badyda, Feedwater repowering of 800

mw supercritical steam power plant, Journal of Power Technologies

(2) (2012) 127.

M. Hediehloo, M. Akhbari, New approach in design of planar coil of

induction cooker based on skin and proximity effects analysis, in: Industrial

Technology, 2009. ICIT 2009. IEEE International Conference

on, IEEE, 2009, pp. 1–6.

’Induction Heating System Topology Review’,

http://www.induksiyonx.com/FileUpload/bs736485/File/an-9012.pdf.

O. Fernandez, J. Delgado, F. Martinez, J. Correa, M. Heras, Design

and implementation of a 120a resonant inverter for induction furnace,

in: Power, Electronics and Computing (ROPEC), 2013 IEEE International

Autumn Meeting on, IEEE, 2013, pp. 1–6.

A. Shenkman, B. Axelrod, Y. Berkovich, Single-switch ac–ac converter

with high power factor and soft commutation for induction heating applications,

IEE Proceedings-Electric Power Applications 148 (6) (2001)

–474.

A. Shenkman, B. Axelrod, Y. Berkovich, Improved modification of the

single-switch ac-ac converter for induction heating applications, IEE

Proceedings-Electric Power Applications 151 (1) (2004) 1–4.

N. Yongyuth, P. Viriya, K. Matsuse, Analysis of a full-bridge inverter

for induction heating using asymmetrical phase-shift control under zvs

and non-zvs operation, in: Power Electronics and Drive Systems,

PEDS’07. 7th International Conference on, IEEE, 2007, pp.

–482.

C.-M.Wang, H.-J. Chiu, D.-R. Chen, Novel zero-current-switching (zcs)

pwm converters, IEE Proceedings-Electric Power Applications 152 (2)

(2005) 407–415.

N.-J. Park, D.-Y. Lee, D.-S. Hyun, A power-control scheme with constant

switching frequency in class-d inverter for induction-heating jar

application, IEEE Transactions on Industrial Electronics 54 (3) (2007)

–1260.

F. Forest, S. Faucher, J.-Y. Gaspard, D. Montloup, J.-J. Huselstein,

C. Joubert, Frequency-synchronized resonant converters for the supply

of multiwinding coils in induction cooking appliances, IEEE Transactions

on Industrial Electronics 54 (1) (2007) 441–452.

P. Savary, M. Nakaoka, T. Maruhashi, A high-frequency resonant inverter

using current-vector control scheme and its performance evaluations,

IEEE Transactions on Industrial Electronics (2) (1987) 247–

A. L. Shenkman, B. Axelrod, V. Chudnovsky, A new simplified model of

the dynamics of the current-fed parallel resonant inverter, IEEE Transactions

on Industrial Electronics 47 (2) (2000) 282–286.

A. Shenkman, B. Axelrod, V. Chudnovsky, Assuring continuous input

current using a smoothing reactor in a thyristor frequency converter for

induction metal melting and heating applications, IEEE Transactions

on Industrial Electronics 48 (6) (2001) 1290–1292.

R. L. Steigerwald, A comparison of half-bridge resonant converter

topologies, IEEE transactions on Power Electronics 3 (2) (1988) 174–

V. Esteve, E. Sanchis-Kilders, J. Jordán, E. J. Dede, C. Cases,

E. Maset, J. B. Ejea, A. Ferreres, Improving the efficiency of igbt seriesresonant

inverters using pulse density modulation, IEEE transactions

on industrial electronics 58 (3) (2011) 979–987.

O. Lucia, J. M. Burdio, I. Millán, J. Acero, L. A. Barragán, Efficiencyoriented

design of zvs half-bridge series resonant inverter with variable

frequency duty cycle control, IEEE Transactions on Power Electronics

(7) (2010) 1671–1674.

J. Espi, E. Dede, E. Navarro, E. Sanchis, A. Ferreres, Features and

design of the voltage-fed l-lc resonant inverter for induction heating,

in: Power Electronics Specialists Conference, 1999. PESC 99. 30th

Annual IEEE, Vol. 2, IEEE, 1999, pp. 1126–1131.

J. Espi, E. Dede, Design considerations for three element l-lc resonant

inverters for induction heating, International journal of electronics

(10) (1999) 1205–1216.

J. Espi, A. Navarro, J. Maicas, J. Ejea, S. Casans, Control circuit design

of the l-lc resonant inverter for induction heating, in: Power Electronics

Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual,

Vol. 3, IEEE, 2000, pp. 1430–1435.

J. Espi, E. Dede, A. Ferreres, R. Garcia, Steady-state frequency analysis

of the" llc" resonant inverter for induction heating, in: Power Electronics

Congress, 1996. Technical Proceedings. CIEP’96., v IEEE International,

IEEE, 1996, pp. 22–28.

J. M. Espi-Huerta, E. J. D. G. Santamaria, R. G. Gil, J. Castello-

Moreno, Design of the l-lc resonant inverter for induction heating based

on its equivalent sri, IEEE Transactions on Industrial Electronics 54 (6)

(2007) 3178–3187.

L. Szablowski, J. Milewski, Dynamic analysis of compressed air energy

storage in the car, Journal of Power Technologies 91 (1) (2011) 23.

J. Milewski, K. Badyda, L. Szablowski, Compressed air energy storage

systems, Journal of Power Technologies 96 (4) (2016) 245.

O. Lucia, J. M. Burdio, L. A. Barragan, J. Acero, I. Millán, Seriesresonant

multiinverter for multiple induction heaters, IEEE Transactions

on Power Electronics 25 (11) (2010) 2860–2868.

J. M. Burdio, F. Monterde, J. R. Garcia, L. A. Barragan, A. Martinez, A

two-output series-resonant inverter for induction-heating cooking appliances,

IEEE Transactions on Power Electronics 20 (4) (2005) 815–

M. Pérez-Tarragona, H. Sarnago, Ó. Lucia, J. M. Burdío, Series resonant

multi-inverter prototype for domestic induction heating, in: Industrial

Electronics Society, IECON 2015-41st Annual Conference of the

IEEE, IEEE, 2015, pp. 005444–005449.

Y.-C. Jung, Dual half bridge series resonant inverter for induction heating

appliance with two loads, Electronics letters 35 (16) (1999) 1345–

F. Forest, E. Laboure, F. Costa, J. Y. Gaspard, Principle of a multiload/

single converter system for low power induction heating, IEEE

Transactions on Power Electronics 15 (2) (2000) 223–230.

N. Nguyen-Quang, D. Stone, C. Bingham, M. Foster, Single phase matrix

converter for radio frequency induction heating, in: Power Electronics,

Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006.

International Symposium on, IEEE, 2006, pp. 614–618.

H. Sugimura, S.-P. Mun, S.-K. Kwon, T. Mishima, M. Nakaoka, Highfrequency

resonant matrix converter using one-chip reverse blocking

igbt-based bidirectional switches for induction heating, in: Power Electronics

Specialists Conference, 2008. PESC 2008. IEEE, IEEE, 2008,

pp. 3960–3966.

H. Sarnago, A. Mediano, O. Lucia, High efficiency ac–ac power electronic

converter applied to domestic induction heating, IEEE Transactions

on Power Electronics 27 (8) (2012) 3676–3684.

J. Rodriguez, J.-S. Lai, F. Z. Peng, Multilevel inverters: a survey of

topologies, controls, and applications, IEEE Transactions on industrial

electronics 49 (4) (2002) 724–738.

J.-S. Lai, F. Z. Peng, Multilevel converters-a new breed of power converters,

IEEE Transactions on industry applications 32 (3) (1996) 509–

G. P. Adam, S. J. Finney, A. M. Massoud, B. W. Williams, Capacitor

balance issues of the diode-clamped multilevel inverter operated in

a quasi two-state mode, IEEE Transactions on Industrial Electronics

(8) (2008) 3088–3099.

L. Qingfeng, W. Huamin, L. Zhaoxia, Discuss on the application of multilevel

inverter in high frequency induction heating power supply, in:

TENCON 2006. 2006 IEEE Region 10 Conference, IEEE, 2006, pp.

–4.

J. I. Rodriguez, S. B. Leeb, A multilevel inverter topology for inductively

coupled power transfer, IEEE Transactions on Power Electronics 21 (6)

(2006) 1607–1617.

B. Nagarajan, R. R. Sathi, Phase locked loop based pulse density

modulation scheme for the power control of induction heating applications,

Journal of Power Electronics 15 (1) (2015) 65–77.

O. Lucia, C. Carretero, D. Palacios, D. Valeau, J. Burdío, Configurable

snubber network for efficiency optimisation of resonant converters applied

to multi-load induction heating, Electronics letters 47 (17) (2011)

–991.

N. A. Ahmed, M. Nakaoka, Boost-half-bridge edge resonant soft

switching pwm high-frequency inverter for consumer induction heating

appliances, IEE Proceedings-Electric Power Applications 153 (6)

(2006) 932–938.

H. Sarnago, O. Lucia, A. Mediano, J. M. Burdío, Class-d/de dual-modeoperation

resonant converter for improved-efficiency domestic induction

heating system, IEEE Transactions on Power Electronics 28 (3)

(2013) 1274–1285.

H. P. Ngoc, H. Fujita, K. Ozaki, N. Uchida, Phase angle control of

high-frequency resonant currents in a multiple inverter system for

zone-control induction heating, IEEE Transactions on power electronics

(11) (2011) 3357–3366.

C. Carretero, O. Luc, J. Acero, J. Burd, et al., Phase-shift control of

dual half-bridge inverter feeding coupled loads for induction heating

purposes, Electronics Letters 47 (11) (2011) 670–671.

M. K. Kazimierczuk, M. K. Jutty, Fixed-frequency phase-controlled fullbridge

resonant converter with a series load, IEEE transactions on

power electronics 10 (1) (1995) 9–18.

H. Kifune, Y. Hatanaka, M. Nakaoka, Cost effective phase shifted pulse

modulation soft switching high frequency inverter for induction heating

applications, IEE Proceedings-Electric Power Applications 151 (1)

(2004) 19–25.

B.-Y. Chen, Y.-S. Lai, Switching control technique of phase-shiftcontrolled

full-bridge converter to improve efficiency under light-load

and standby conditions without additional auxiliary components, IEEE

transactions on power electronics 25 (4) (2010) 1001–1012.

P. Imbertson, N. Mohan, Asymmetrical duty cycle permits zero switching

loss in pwm circuits with no conduction loss penalty, IEEE transactions

on industry applications 29 (1) (1993) 121–125.

P. Imbertson, N. Mohan, New pwm converter circuits combining zero

switching loss with low conduction loss, in: Telecommunications Energy

Conference, 1990. INTELEC’90., 12th International, IEEE, 1990,

pp. 179–185.

S. Yachiangkam, A. Sangswang, S. Naetiladdanon, C. Koompai,

S. Chudjuarjeen, Resonant inverter with a variable-frequency asymmetrical

voltage-cancellation control for low q-factor loads in induction

cooking, in: Power Electronics and Applications (EPE 2011), Proceedings

of the 2011-14th European Conference on, IEEE, 2011, pp. 1–10.

S. Hosseini, A. Y. Goharrizi, E. Karimi, A multi-output series resonant

inverter with asymmetrical voltage-cancellation control for inductionheating

cooking appliances, in: Power Electronics and Motion Control

Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Vol. 3,

IEEE, 2006, pp. 1–6.

J. Jittakort, S. Chudjuarjeen, A. Sangswang, S. Naetiladdanon,

C. Koompai, A dual output series resonant inverter with improved

asymmetrical voltage-cancellation control for induction cooking appliance,

in: IECON 2011-37th Annual Conference on IEEE Industrial

Electronics Society, IEEE, 2011, pp. 2520–2525.

L. A. Barragán, J. M. Burdío, J. I. Artigas, D. Navarro, J. Acero,

D. Puyal, Efficiency optimization in zvs series resonant inverters with

asymmetrical voltage-cancellation control, IEEE transactions on power electronics 20 (5) (2005) 1036–1044.

N. A. Ahmed, High-frequency soft-switching ac conversion circuit with

dual-mode pwm/pdm control strategy for high-power ih applications,

IEEE transactions on industrial electronics 58 (4) (2011) 1440–1448.

H. Fujita, H. Akagi, Control and performance of a pulse-densitymodulated

series-resonant inverter for corona discharge processes,

IEEE Transactions on Industry Applications 35 (3) (1999) 621–627.

O. Lucia, J. M. Burdio, I. Millan, J. Acero, D. Puyal, Load-adaptive control

algorithm of half-bridge series resonant inverter for domestic induction

heating, IEEE Transactions on Industrial Electronics 56 (8) (2009)

–3116.

S. Shah, A. K. Upadhyay, Analysis and design of a half-bridge seriesparallel

resonant converter operating in discontinuous conduction

mode, in: Applied Power Electronics Conference and Exposition, 1990.

APEC’90, Conference Proceedings 1990., Fifth Annual, IEEE, 1990,

pp. 165–174.

V. Belaguli, A. K. Bhat, Series-parallel resonant converter operating in

discontinuous current mode. analysis, design, simulation, and experimental

results, IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications 47 (4) (2000) 433–442.

I. Millan, D. Puyal, J. Burdio, C. Bemal, J. Acero, Improved performance

of half-bridge series resonant inverter for induction heating with discontinuous

mode control, in: Applied Power Electronics Conference,

APEC 2007-Twenty Second Annual IEEE, IEEE, 2007, pp. 1293–1298.

J. Tian, G. Berger, T. Reimann, M. Scherf, J. Petzoldt, A half-bridge series

resonant inverter for induction cookers using a novel fpga-based

control strategy, in: Power Electronics and Applications, 2005 European

Conference on, IEEE, 2005, pp. 1–9.

H. N. Pham, H. Fujita, K. Ozaki, N. Uchida, Dynamic analysis and control

for resonant currents in a zone-control induction heating system,

IEEE Transactions on Power Electronics 28 (3) (2013) 1297–1307.

J. Egalon, S. Caux, P. Maussion, M. Souley, O. Pateau, Multiphase system

for metal disc induction heating: Modeling and rms current control,

IEEE Transactions on industry applications 48 (5) (2012) 1692–1699.

M. Cano, A. Barrera, J. Estrada, A. Hernandez, T. Cordova, An induction

heater device for studies of magnetic hyperthermia and specific

absorption ratio measurements, Review of Scientific Instruments

(11) (2011) 114904.

D. Paesa, C. Franco, S. Llorente, G. Lopez-Nicolas, C. Sagues, Adaptive

simmering control for domestic induction cookers, IEEE Transactions

on Industry Applications 47 (5) (2011) 2257–2267.

N. K. Long, S. Caux, X. Kestelyn, O. Pateau, P. Maussion, Resonant

control of multi-phase induction heating systems, in: IECON 2012-38th

Annual Conference on IEEE Industrial Electronics Society, IEEE, 2012,

pp. 3293–3298.

A. Dominguez, L. A. Barragan, A. Otin, D. Navarro, D. Puyal, Inversebased

power control in domestic induction-heating applications, IEEE

transactions on industrial electronics 61 (5) (2014) 2612–2621.

J. I. Artigas, I. Urriza, J. Acero, L. A. Barragan, D. Navarro, J. M. Burdio,

Power measurement by output-current integration in series resonant

inverters, IEEE Transactions on Industrial Electronics 56 (2) (2009)

–567.

D. Navarro, Ó. Lucı, L. A. Barragán, I. Urriza, Ó. Jiménez, et al.,

High-level synthesis for accelerating the fpga implementation of computationally

demanding control algorithms for power converters, IEEE

Transactions on Industrial Informatics 9 (3) (2013) 1371–1379.

O. Lucia, L. A. Barragan, J. M. Burdio, O. Jimenez, D. Navarro, I. Urriza,

A versatile power electronics test-bench architecture applied to

domestic induction heating, IEEE Transactions on Industrial Electronics

(3) (2011) 998–1007.

D. Navarro, Ó. Lucía, L. A. Barragan, J. I. Artigas, I. Urriza, O. Jimenez,

Synchronous fpga-based high-resolution implementations of digital

pulse-width modulators, IEEE transactions on power electronics 27 (5)

(2012) 2515–2525.

O. Jimenez, O. Lucia, I. Urriza, L. A. Barragan, P. Mattavelli, D. Boroyevich,

An fpga-based gain-scheduled controller for resonant converters

applied to induction cooktops, IEEE Transactions on Power Electronics

(4) (2014) 2143–2152.


Refbacks

  • There are currently no refbacks.