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Abstract

As various renewable energy resources (RERs) are exploited within microgrids (MGs), some important challenges have
arisen as regards coping with generation fluctuations. This paper proposes a probabilistic method aimed at achieving optimal
coordinated operation in a grid of microgrids under uncertainties of RERs and variable load demand. In the supposed structure
based on networked microgrids (NMGs), a two-level strategy is required for guaranteeing efficient coordination between the
MGs and distribution network operator (DNO). Another contribution of the paper deals with the flexibility of NMGs in improving
the reliability of the whole system. Additionally, the value at risk (VaR) calculations for output results are carried out for different
confidence levels with two important methods. In sum, the aim of the paper is to minimize total energy costs considering the
environmental effects. To achieve this purpose, the Imperialist Competitive Algorithm (ICA) as a heuristic algorithm is applied
to solve the optimal power dispatch problem and the obtained results are compared using the Monte Carlo Simulation (MCS)
method. As the input data are modeled under uncertainties, the output results are described with probability distribution
function (PDF).

Keywords: Optimal Coordinated Operation, Networked microgrids (NMGs), Reliability Evaluation, Value at Risk, ICA

1. Introduction

As global power distribution systems are developing
rapidly, traditional grids are gradually facing a fossil fuels cri-
sis – to which renewable energy resources (RERs) can be
an efficient and sustainable response [1]. A microgrid, which
consists of distribution sources, storage systems, loads and
other control sections, has the advantages of being self-
running and energy complementary and having optimal man-
agement and coordination control [2, 3].

In recent years, the development of microgrids has grad-
ually trended towards a larger scale with numerous regional
characteristics and diverse forms, which create the concept
of Grid of Microgrids or Networked Microgrids (NMGs). In
[4], the authors use probabilistic forward-backward load flow
with the Monte Carlo simulation (MCS) algorithm to achieve
optimal management of distributed energy resources (DER)
in a multi-MGs structure. The trading of power between the
MGs is one of the significant benefits in the NMG structure
and satisfies their own local demands. In [5], an interest-
ing energy management system is introduced to enhance
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the capability of NMGs in achieving economic conditions for
both MG owners and the distribution network. In this regard,
demand response programs are utilized as powerful tools to
mitigate the operation costs of MGs, using particle swarm
optimization under possible uncertainties of the network pa-
rameters. In [6], an iterative distributed algorithm is used to
optimize the operation cost of MGs without considering the
impact of the distribution network, which may affect the relia-
bility of satisfaction, especially for consumers. NSGA-II algo-
rithm is utilized in MGs optimal scheduling to fulfill the eco-
nomic and environmental aims of multi-MGs structure [7]. In
providing reliable coordination between the MGs and distri-
bution system operator (DNO) plays a vital role in regulating
the generation-load balance in the whole system [8]. The op-
timal operation problem is supposed as a stochastic bi-level
problem in [9, 10], in which the DNO acts as an upper level
network for the MGs. A nested energy management system
is applied in day-ahead scheduling of networked microgrids
[11]. In this energy management strategy, due to the lay-
ered privacy structure, customer privacy is preserved. One
of the crucial features of smart grids is self-healing, aided
by MGs. Arefifar et al. [12] proposed a planning model to
divide a distribution system into networked MGs for optimal
self-healing. Wang et al. [13] presented a transformative
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architecture in autonomous mode of NMGs in order to re-
spond to the optimal operation problem and self-healing cir-
cumstances through two-layer cyber communication.

One of the important reasons for gravitation from conven-
tional distribution systems to small scale energy zones or
MGs is the desire to improve reliability. In the NMG struc-
ture power trading between MGs in addition to the main
grid means the interruption rate decreases strongly and con-
sumers are burdened with minimum cost detriments. More-
over, the power congestion in distribution lines in the mod-
ern NMGs frame is not comparable with that in classical net-
works. In other words, MGs can deliver electricity between
to one another without being concerned about line capac-
ity, because MGs can interconnect through direct lines with
low amounts of transacted power compared to classical lines
with high power congestion[3]. In [14],the reliability of NMGs
are evaluated using the nonsequential Monte Carlo method
under uncertainties of generation and load in various oper-
ating modes of the proposed structure. In [15], the authors
have designed the MGs considering systematic strategy in
teh presence of plausible faults in the system. Moreover,
they used the concept of NMGs according to the definition
of IEEE Std 1547.4 in order to modify the reliability of the
whole system under fluctuations of distributed generations
(DGs) and loads. In some cases, in order to enhance the
reliability of the distribution system, the demand response
programs (DRPs) can be beneficial for both consumers and
MG owners. In [16], the authors by mitigating the operational
limit violations prevent load interruption thereby improving
the reliability level of the distribution network. Kopsidas et
al. [17] have shown that DRPs can efficiently regulate de-
mand scheduling and play an important role in improving the
reliability indicators and expected generation costs.

Value at risk (VaR) is the maximum potential loss expected
on a portfolio over a given time period, using statistical meth-
ods to calculate a confidence level. Usually, risk manage-
ment is achieved through using so-called risk measures. Re-
cently, the CVaR is used widely in problems relating to elec-
tricity markets, because of its coherent risk measure and lin-
ear formulation [18]. In light of the aforementioned literature,
the contribution of the proposed paper can be summarized
as follows:

• In this paper optimal operation of small scale en-
ergy sources (SSESs) within small scale energy zones
(SSEZs) is proposed. Renewable generations and
loads are described by probability distribution functions
(PDFs) for a structure based on NMGs. In the proposed
structure for microgrids, some MGs are connected to-
gether upstream network.

• After obtaining output results in PDF form, the reliabil-
ity of network is calculated under uncertainty. We use
some indices to analyze the reliability of network. An-
other important discussion in the paper is calculation of
Value at Risk (VaR) for output results. VaR calculations
are assessed based on a different confidence level.

• In order to achieve optimal operation of microgrids, we
used a heuristic algorithm. The objective of the pro-
posed cost function is to minimize the net cost of mi-
crogrids, such as power generation cost, power trans-
action cost, operation and maintenance cost, and pollu-
tant emission cost. Finally„ the results obtained by the
proposed method are compared with MCS to show the
accuracy of the method.

The remainder of this paper is organized as follows. After
presenting the architecture of the considered Networked Mi-
grogrid (NMG) in Section 2, the proposed modeling which
covers load modeling, SSEZs’ DG units, cost modeling, ob-
jective functions and correlated constraints and the solution
are presented in Section 3 and Section 4. Numerical results
attained through performance tests are presented in Section
5, while some final conclusions are drawn in Section 6.

2. Paradigm Structure of Microgrid

Fig. 1 presents a grid of microgrids with four small scale
energy zones (SSEZs). Each one of these SSEZs is a mi-
crogrid with local power generation, storage systems, and
loads, which can not only exchange their own power with
other MGs but also connect to the distribution network in crit-
ical situations in order to avoid load shedding in any given
time. The SSEZs have bidirectional power exchange with
each other and the upstream grid. This structure can be ex-
tended to an MG with a large number of SSEZs based on
a study case. In [2] a microgrid with three SSEZs is dis-
cussed as a study case. In the proposed work, all SSEZs
are connected together, but two MGs do not have a direct
link with each other (MG1 and MG3). These MGs are con-
nected together with an interface SSEZ (MG4) and power
exchanging between MG1-MG3 is performed through MG4
(see green circle right-middle). Similarly, we used a wheel-
ing concept in the proposed structure. In a wheeling system,
power flows from one point to another through a third sys-
tem. This MG has no local load or power generation unit and
only transfers power between MG2 and MG3.

As shown in Fig. 1, the supposed structure consists of var-
ious components, including renewable generation, conven-
tional generation, which are flexible components in a micro-
grid and can be regarded as micro-turbines (MT), fuel cells
(FC) and combine heat and power (CHP), and load. There is
a single point of connection to an upstream grid called a point
of common coupling (PCC). LC is the local controller related
to units/load. Each LC receives its set points from the MG
central controller (MGCC) [19].

3. Probabilistic Modeling of Renewable Resources and
Loads

Increasing use of renewable energy resources (RERs) im-
poses important challenges and concerns in regard of confi-
dent access to these resources at any given time. In the case
of WTs, in order to achieve a desirable generation rate, initial
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Figure 1: Structure of future smart distribution grid with NMGs

wind speed is the key element in determining power output.
For PVs, solar radiation and ambient temperature are key
factors in achieving ideal power generation. On the other
hand, fluctuations on the demand side pose a challenge to
guaranteeing economical operation of NMGs. Taking all the
above-mentioned concerns about RERs and loads into ac-
count, modeling these MG elements with probability distribu-
tion function (PDF) can pave the way for accurate and pre-
cise analysis in operational problems. Applying PDF for each
element can show a realistic and reliable prospect of optimal
operation of MGs.

There are various distribution functions that can be used
for modeling the existing intermittency in load demands. In
this paper, normal distribution is applied in the modeling pro-
cess of the loads as follows [20, 21]:

f (P1) =
1

σPl ×
√

2π
exp

− (Pl − µPl)2

2 × σ2
Pl

 (1)

For wind generation, Weibull PDF is frequently used in
modeling the wind speed [22, 23]:

fv (v) =

 0 otherwise
δ
α
×

(
ν
α

)δ−1
× exp

(
−

(
ν
α

)δ)
ν ≥ 0 (2)

After producing the wind speed samples, we need (3) to
convert the samples to wind power according to the wind
speed-power curve:

PG,WT (ν) =


0 0 ≤ ν ≤ νci ≥ νco

Pr,WT
ν−νci
νr−νco

νci < ν < νr

Pr,WT νr < ν < νco

(3)

The PV output fluctuates according to the input radiation
of the sun. Thus, the location of PVs plays a vital role in
generating the electricity, which can easily affect the perfor-
mance of the whole system especially as poor placement of
the solar arrays would hinder the aim of fulfilling demand. In
this paper, in order to achieve a confident solution for opti-
mal operation of MGs, beta distribution function [24] is used
for radiation sampling and then (4) can convert the radiation
samples to the final power output of the PV [25].

PPV (R) =


Pr, PV

(
R2

RS T DRc

)
0 ≤ R ≤ Rc

Pr, PV

(
R

RS T D

)
Rc ≤ R ≤ RS T D

Pr, PV RS T D ≤ R
(4)

4. Problem Definition

4.1. Cost modeling

Each MG encounters various kinds of costs that affect the
total operation cost within the MGs. These costs are as fol-
lows: renewable power generation, power transaction, oper-
ation and maintenance, and pollutant emission costs.

In terms of power generated within the microgrids, the pri-
mary energy cost is the deciding factor in generation cost.
Equation (5) describes the generation cost of FC, MT and
CHP units, which depend on a constant coefficient of initial
energy cost. It is obvious that this coefficient is zero for both
WT and Pv:

Cg, unit = αα × Pg, unit (5)

We can use a Cg − Pg curve to show the direct relation
between the generation cost and power for each unit [2]. An-
other important cost that affects an MG’s operation cost re-
lates to operation and maintenance (O&M) cost. This cost
with a coefficient (KO&M) for each unit can be described as:

(6)

Trading of power between MGs as well as between a mi-
crogrid and the distribution network is one of the significant
contributions of NMGs. The main goal of power exchanging
can be divided into two sections: first, creating a generation-
load balance within all MGs. The proposed problem in this
paper should be optimized on two levels. On the first level
each MG using MGCC fulfills demand through receiving data
from renewable generation and loads, but MGs cannot afford
the power balance between the generation and load because
of either a lack of generated power for consumers or extra
power that should be consumed at the same time. On the
next level, MGs in order to create a power balance have to
connect to the DNO and start sharing their powers with each
other. The second benefit of power exchanging is mitigat-
ing the impact of the distribution network in the generation
process. Overall, the major aim of today’s SSEZs is to use
small scale energy resources to satisfy local loads without
involving large distribution grids in the process. A signifi-
cant point in the proposed structure is the presence of MG4.
MG4 operates as an interface area in the network. As we
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see in Fig. 1 there is no direct connection between MG1 and
MG3, but two MGs are linked together through MG4, indi-
rectly. The role of MG4 is to purchase a certain amount of
power from an MG (MG1 or MG3) with one particular cost
coefficient and to sell the same power to the other MG (MG3
or MG1) with another cost coefficient. In order to explain
the transaction cost mathematically, the related formulation
of purchased and sold costs of each MG is described as:

Cbuy,MG = cMG × Pbuy,MG (7)

Csell,MG = dMG × Psell,MG (8)

According to Fig. 1, the proposed network consists of four
MGs, with MG4 considered as an interface microgrid. Each
MG has its own cost coefficient for purchasing and selling
powers. These costs for MGs are as follows:

c =


0.00 cMG1−MG2 K cMG1−NW

cMG2−MG1 0.00 K cMG2−NW

M M M M
cNW−MG1 cNW−MG2 K 0.00

 (9)

d = [c]T (10)

It should be mentioned that the cost coefficient value of
MG4 is higher than MG1 and MG2, because MG4 regards
losses in lines between MG4-MG1 and MG4-MG3. The cost
of power transaction in the network is presented as follow:

Ctrans,MG = Cbuy,MG −Csell,MG (11)

Since an MG cannot buy and sell its sharing power in the
market at the same time, we have the following constraints
on purchased and sold powers:

{
i f Pg,MG − Pl,MG > 0 ⇒ Pbuy,MG = 0, Psell,MG > 0
i f Pg,MG − Pl,MG < 0 ⇒ Pbuy,MG > 0, Psell,MG = 0 (12)

The generation process always has related environmental
effects and each MG emits some pollutants into the air, such
as NOx, S O2 and CO2. The pollution cost for each unit can
be described as follows:

CE, unit =

3∑
j=1

γ j ×
(
ρunit, j × Pg, unit

)
(13)

Pollution coefficients for each pollutant γ are described in
[26].

4.2. Objective function

In our proposed NMG structure, DNO and MGs are con-
sidered as distinguished entities with individual objectives to
optimize their own operation costs. Our proposed algorithm
solves the problem on two levels: On the first level, the op-
timal solution for the operation cost of each MG is achieved
within the MGs separately. In this regard, each MG during
the optimization process determines its generation amount

of units by taking into account the satisfaction of the load-
generation balance. On the second level, after achieving the
optimal operation cost of each MG, the MG entities should
be coordinated with DNO. Then, DNO plays a significant role
in response to the MGs’ requests. Overall, it can be stated
that the proposed problem is solved with a bi-level algorithm.
However, a decision made by one MG could affect the oper-
ational planning of other entities, which reflects the fact that
none of the MGs can optimize their cost function by chang-
ing their decisions from ttime to time [27], [28]. On the other
hand, in the proposed networked MGs-based structure, DNO
and MGs can run as autonomous entities during some oper-
ation hours. The objective function for each MG is as follows:

Min OF = fPG (s) + fPE (s) (14)

fPG (s) =
9∑

unit=1

[
Cg, unit (s) +CO&M, unit (s)

]
+

3∑
MG=1

Ctrans,MG (s)

(15)

fPE (s) =
9∑

unit=1

CE, unit (s) (16)

4.3. Problem constraints

The supposed cost function should be solved under im-
portant constraints such as equal and unequal limits. The
equal constraint of the problem which is called generation-
load balance is described as follows:

9∑
unit=1

Pg, unit (s) =
3∑

unit=1

[
Pl,MG (s) + Ptrans,MG (s)

]
+ Ploss,NW (s)

(17)

Ploss,NW (s) =
∑

i=unit

∑
j=unit

Pg, i (s) Bi jPg, i (s)+
∑

i=unit

B0iPg, i (s)+B00

(18)
Besides, there are some unequal constraints for genera-

tion and transaction powers as follows:

Pg,Min (s) < Pg, unit (s) < Pg,Max (s) (19)

Pbuy,Min (s) < Pbuy,MG (s) < Pbuy,Max (s) (20)

Psell,Min (s) < Psell,MG (s) < Psell,Max (s) (21)

One of the unequal constraints that operates as a security
constraint is transmission of power between MGs as well as
between MGs and the external grid.

0 < Ptrans,MG−MG (s) < Ptrans,Max (s) (22)

0 < Ptrans,MG−NW (s) < Ptrans,Max (s) (23)
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4.4. Reliability evaluation

Reliability assessment is an important part of power sys-
tems studies. One of the obvious issues in the gravita-
tion from conventional and large scale systems toward the
NMGs is how to deliver reliability improvements. Because re-
newable resources and load fluctuations are an inseparable
feature of microgrids, reliability evaluations encounter great
challenges. In this paper, in order to have a more focused
reliability assessment, some new indices are presented in
the NMGs structure under uncertainties. Therefore, reliabil-
ity outputs are described in PDF form. One of the reliability
indices is loss of load capacity (LOL), which describes the
capacity of loss of load (kWh). Let LOLi be the loss of load
obtained for the ith contingency, with a probability of probi.
Then the expected power not served or loss of load expecta-
tion (EPNS or LOLE) can be considered as follows:

EPNS =
∑

i

LOLi × probi (24)

The reliability of the network is then given by eq.(25):

EIR = 1 −
EPNS
Pl,MG

(25)

The percentage of demand that can be covered by RERs
is called renewable energy penetration (REP). At certain
given times, a portion of consumer load can be supplied by
conventional sources of MGs such as FC, MT, and CHP. This
kind of index is called microgrid conventional power penetra-
tion (MCPP). The mentioned indices are described as fol-
lows:

REP =
kWh renewable energy produced in given time

Total kWh load demand in given time
(26)

MCPP =
Sum of rated power of conventional DGs

Average load demand of MG
(27)

Interruption cost is due to customer demand not being
met by the utility because of outages in generating units. In
this paper, we set the cost of interruption for MGs at 1.75
US D/kWh as described in [29] for household consumption.
Total interruption cost in each MG is described as follows:

CLOLEMG = 1.75 × EPNS (28)

4.5. Value at risk calculations

For a given time horizon and confidence level β, the
value-at-risk at confidence level β is the smallest cost (loss
in market value) over the time horizon that is exceeded
with probability (no greater than) 1 − β. In this paper
two different approaches, namely historical simulation and
Variance-Covariance methods, were used to calculate the
VaR for some obtained results. The strength of the Variance-
Covariance approach is that the VaR is simple to compute.

Table 1: Mean value of each reliability index in two cases

β 0.95 0.975 0.99 0.999

γ 1.645 1.960 2.326 3.090

Figure 2: Flowchart of the ICA on probabilistic power dispatch considering
reliability and VaR assessments

If conditional returns are not normally distributed, the com-
puted VaR will understate the true VaR. VaR calculation
based on Variance-Covariance method is as follows:

(29)

In (29), for a determined parameter (γ) the mean value
(Mean) and standard deviation (STD) of γ is calculated. Dif-
ferent values of Zβ considering confidence level (β) are set
out in Table 1.

In addition to optimal power dispatch results, the results
from reliability assessments are described in PDF form, then
under these probabilistic results, VaR assessments can be
done for all existing outputs.

4.6. Brief review of ICA

The Imperialist Competitive Algorithm (ICA) introduced in
[30] is used here to solve the power dispatch problem. In this
algorithm, imperialist countries attempt to dominate other
countries and compete strongly with each other to take pos-
session of other countries. During this competition, stronger
empires become powerful and the weakest one will col-
lapse. The steps used in the ICA for probabilistic power dis-
patch considering reliability and VaR assessments can be
observed as Fig. 2:
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5. Simulation Results and Discussions

Numerical results are presented to illustrate the effective-
ness of the proposed dispatching systems. In this section,
we show the results obtained through solving the optimal
scheduling problem and then the reliability and VaR calcu-
lations are illustrated. In this paper, for the given time 2000
samples are used to simulate the uncertainty of the men-
tioned variables. In an MG the sum of the power generated
by micro sources within the same MG determines the total
power generation of the MG. Generated power by each MG
is described in PDF form. In Table 2 the mean value of power
generation and related costs in MGs are represented con-
sidering VaR calculation with two different confidence levels:
0.95 and 0.975 using two approaches. In Table 2, gener-
ated power of MGs and related costs are analyzed. Table 2
uses mean value and standard deviation, the results are de-
scribed. The results obtained by the ICA algorithm are com-
pared with the MCS method. The power generated by each
MG as well as their related costs are obtained from cost func-
tion optimization.

Besides, the results for purchased and sold powers/costs
are illustrated in Table 3. In Table 2, the VaR assess-
ments have been carried out based on two different val-
ues of confidence level (β), 0.95 and 0.975. VaR calcula-
tions have been achieved by approaches, historical (Hist)
and variance-covariance (V-C) methods. One of the impor-
tant points based on results from Table 3 is that the PDF of
purchased or sold power/cost may not be in normal distri-
bution function. Hence, in order to calculate VaR, we have
used historical approach to assess VaR for confidence level
0.95. As an examination of the results of Tables 2 and 3 two
main conclusions are checked, first, transaction purchased
power/cost in ICA is lower than MCS and the sold power/cost
in ICA is much higher than MCS, respectively. Accordingly,
ICA due to its structure manages the transaction power and
cost better than MCS and save more energy and cost effec-
tively. Second, transaction VaR for histogram and variance-
covariances methods in purchased power/cost in ICA are
lower than MCS and for the sold power/cost in ICA is higher
than MCS, respectively.

The PDF of total cost of network is shown in Fig. 3. In
the figure, sum of pollutant emission cost and operation cost
consist of generated power cost, transaction cost and O&M
cost create total cost of network. In this figure the value of
VaR is described for different values of confidence levels.

In Fig. 3, the VaR values for total cost of the network are
calculated for four confidence levels: 0.95, 0.975, 0.99 and
0.999. The Variance-Covariance approach is applied to VaR
assessment, because it benefits from normal PDF for the
discussed results.

This paper evaluates the reliability of the distribution sys-
tem including DGs. The stochastic characteristics of photo-
voltaic and wind power DGs are first studied, and a reliability
model for the microgrids with DGs established. The goal of
reliability studies in the paper is calculating reliability indices
considering the microgrid concept under intermittent behav-

iors of the distributed energy resources within MGs. VaR
analysis can be performed for reliability indices considering
different values of confidence levels. In the paper, the fol-
lowing failure rates for MG1, MG2 and MG3 are considered:
0.05, 0.04 and 0.03, respectively. In Table 4 reliability indices
are described for the microgrids structure.

As was concluded from Table 4, in the assessment pro-
cess first the cost function is optimized and then the relia-
bility indices are calculated. Therefore, we can see that the
results obtained by ICA in the optimizing process are bet-
ter than with the MCS method. The loss of load expectation
value for MGs calculated by ICA is less than the MCS as-
sessment. Hence, the cost of LOLE using ICA is less com-
pared to MCS.

It should be mentioned that all obtained results are af-
fected if changes are made to the limitations of problem con-
straints such as power generation limits. For example, In
Fig. 4 with decreasing generated power in MGs, the value
of LOL will be greater. As mentioned before, MG4 operates
as an interface SSER. For example, if MG1 wants to trans-
fer a determined power to MG3, MG4 should receive power
from MG1 and deliver the same power to MG3. Fig. 5 il-
lustrates the transaction of power between MG1 and MG3
through MG4 as well as the total transaction of power by
MG4 in PDF form.

In order to assess the VaR of MGs reliability, in Fig. 5 the
values of VaR for LOLE of each MG are shown based on
the different values of confidence levels. In this figure, the
assessments of ICA are compared with MCS results. In ad-
dition to LOLE calculation, in Table 5 other reliability indices
are analyzed based on VaR. In this paper, the optimal power
dispatch problem is analyzed considering market operation
and reliability.

In order to evaluate the objective function value as de-
scribed in eq.(13) between the proposed method and MCS,
we tested ICA and MCS in the same structure for a smart
distribution grid with NMGs (see the Fig. 1). Table 6 reports
the obtained value for the cost function (OF) and the imple-
mentation time. According to Table 6, the cost function which
is the sum of operation, pollution and interruption costs using
the heuristic algorithm, the proposed method and its execu-
tion time are lower than MCS. This confirms that the ICA is
capable of effectively converging the drawbacks of the clas-
sic method. As a result, this is an important advantage of the
proposed algorithm.

6. Conclusion

In this paper a framework is proposed for optimal power
dispatch in interconnected NMGs considering reliability and
market operation of MGs. The uncertainty in MGs compo-
nents such as SSERs and load are modeled and simulated
by numerical analysis. In addition to reliability evaluations
of MGs operations, the VaR assessment is used to show
the risk of some output results. Historical and variance-
covariance methods are two methods, which have been ap-
plied to obtain the value of risk for studied outputs. In or-

— 184 —



Journal of Power Technologies 97 (3) (2017) 179–189

Table 2: Statistical analysis of powers and their related costs in MGs and VaR calculations

Type ICA MCS
MG1 MG2 MG3 MG1 MG2 MG3

Power

Generation µ : 544.04 µ : 627.05 µ : 585.88 µ : 541.88 µ : 625.20 µ : 582.52
kW ρ : 90.34 ρ : 90.11 ρ : 69.99 ρ : 93.52 ρ : 88.57 ρ : 70.08
VaR β : 0.95:690.08 β : 0.95:777.50 β : 0.95:695.61 β : 0.95:696.17 β : 0.95:770.04 β : 0.95:696.76
Hist β : 0.975:711.80 β : 0.975:798.35 β : 0.975:714.18 β : 0.975:715.90 β : 0.975:788.79 β : 0.975:712.17
VaR β : 0.95:692.65 β : 0.95:775.27 β : 0.95:701.01 β : 0.95:695.73 β : 0.95:770.89 β : 0.95:697.79
V-C β : 0.975:721.10 β : 0.975:803.66 β : 0.975:723.06 β : 0.975:725.19 β : 0.975:798.79 β : 0.975:719.87

Cost

Generation Cost µ : 34.45 µ : 117.17 µ : 64.05 µ : 34.39 µ : 116.82 µ : 63.34
$/h ρ : 7.28 ρ : 13.08 ρ : 9.19 ρ : 7.16 ρ : 13.14 ρ : 9.23
VaR β : 0.95:47.29 β : 0.95:138.04 β : 0.95:79.88 β : 0.95:47.06 β : 0.95:137.20 β : 0.95:79.18
Hist β : 0.975:48.55 β : 0.975:140.07 β : 0.975:82.15 β : 0.975:48.67 β : 0.975:139.77 β : 0.975:81.64
VaR β : 0.95:46.42 β : 0.95:138.70 β : 0.95:79.17 β : 0.95:46.19 β : 0.95:138.44 β : 0.95:78.53
V-C β : 0.975:48.71 β : 0.975:142.82 β : 0.975:82.06 β : 0.975:48.42 β : 0.975:142.58 β : 0.975:81.44

Table 3: Statistical analysis of transaction powers and costs in MGs and VaR calculations

Type ICA MCS
MG1 MG2 MG3 MG1 MG2 MG3

Related to Power

Purchased µ : 51.93 µ : 81.28 µ : 73.95 µ : 58.04 µ : 89.39 µ : 82.39
Power, kW ρ : 88.81 ρ : 121.33 ρ : 103.61 ρ : 95.85 ρ : 127.54 ρ : 111.26
VaR, Hist β : 0.95:250.29 β : 0.95:341.90 β : 0.95:283.13 β : 0.95:263.79 β : 0.95:356.65 β : 0.95:316.57
Sold Power µ : 93.73 µ : 87.38 µ : 64.11 µ : 87.68 µ : 78.63 µ : 57.19
kW ρ : 115.67 ρ : 123.76 ρ : 98.17 ρ : 112.90 ρ : 118.14 ρ : 93.37
VaR, V-C β : 0.95:335.32 β : 0.95:355.02 β : 0.95:277.23 β : 0.95:330.14 β : 0.95:330.86 β : 0.95:261.35

Related to Cost

Purchased µ : 9.66 µ : 14.99 µ : 13.85 µ : 10.90 µ : 16.60 µ : 15.52
Cost, $/h ρ : 7.28 ρ : 13.08 ρ : 9.19 ρ : 7.16 ρ : 13.14 ρ : 9.23
VaR, Hist β : 0.95:46.58 β : 0.95:63.91 β : 0.95:54.83 β : 0.95:49.99 β : 0.95:68.20 β : 0.95:61.60
Sold Cost µ : 17.53 µ : 16.39 µ : 12.19 µ : 16.33 µ : 14.63 µ : 10.82
$/h ρ : 21.84 ρ : 23.47 ρ : 18.73 ρ : 21.22 ρ : 22.26 ρ : 17.76
VaR, V-C β : 0.95:63.51 β : 0.95:66.59 β : 0.95:53.34 β : 0.95:61.39 β : 0.95:63.50 β : 0.95:49.03
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Figure 3: PDF and CDF of total cost of network considering VaR assessment

— 185 —



Journal of Power Technologies 97 (3) (2017) 179–189

a) MG1 LOLE (kW/h)
0 10 20 30 40 50

D
en

si
ty

0

20

40

60

80

100
ICA
Normal

b) MG2 LOLE (kW/h)
-10 0 10 20 30 40 50 60

D
en

si
ty

0

20

40

60

80

100

120

140
ICA
Normal

c) MG3 LOLE (kW/h)
-5 0 5 10 15 20 25 30 35 40

D
en

si
ty

0

50

100

150

200
ICA
Normal

Figure 4: PDF of LOLE of MGs using ICA
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Table 4: Reliability indices of the proposed network

Method #MG LOLE EIR REP MCPP CLOLE
kW/h pu pu pu $/h

ICA
1 17.99 0.9998 0.45 1.08 31.48
2 17.49 0.9999 0.23 1.19 30.61
3 17.38 0.9999 0.15 1.53 23.41

MCS
1 34.57 0.9996 0.44 1.05 60.50
2 38.81 0.9997 0.22 1.16 67.93
3 36.62 0.9997 0.15 1.48 64.09

Microgrid
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Figure 6: VaR assessments for LOLE in MGs using ICA

der to analyze the optimal operation of microgrids, ICA as
a heuristic algorithm is applied in the optimization process.
The objective of the proposed cost function is to minimize the
net cost of microgrids under load fluctuations and DGs un-
certainty. The MCS method is used to compare the results.
The presented simulation results show the effectiveness of
the proposed model in terms of reducing total energy costs
considering operational constraints.
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Nomenclature

α, β Shape and scale parameters of Weibull function

αα Constant value of units

γ j Price coefficient of pollutant j

µPL Mean value of load power

ν Wind speed [m/s]

ρPL Standard variation of load power

ρunitl, j Emission factor of pollutant j at units

Bi j, Bi0, B00 Losses coefficients

Cbuy−MG Cost of purchased power by MGs

CE,unit Pollution cost of units

Cg,unit Power generation cost for units

CMG, dMG Purchased and sold powers cost coefficients
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CO&M,unit Operation and maintenance cost of units coeffi-
cients

Csell−MG Cost of sold power by MGs

CTrans,NG Cost of transaction power by MGs

CLOLEMG Total interruption cost in each MG

EIR Index of reliability

EPNS Loss of load expectation

fPE(s) Cost function related to pollution emission in
sample s

fPG(s) Cost function related to generated power in sam-
ple s

KO&M,unit Operation and maintenance cost coefficients

LOLi Loss of load of the ith contingency

MCPP Microgrid Conventional Power Penetration

OF Objective Function

Pbuy,MG Purchased power by each MG

Pg,MG Generated power in each MG

Pg,unit Generated power for units

PG,WT Generated power by wind turbine

Ploss,NW (s) Network power losses in sample s

Ppv Generated power by PV [kW]

Pr,PV Rated power of PV [kW]

Pr,WT Rated power of wind turbine [kW]

Psell,MG Sold power by each MG

Ptrans,MG(s) Transaction power of a MG in sample s

R Solar irradiance [W/m2]

Rc A certain radiation point, usually set to 150
[W/m2]

RS T D Solar radiation in the standard conditions usually
set to 1000 [W/m2]

REP Renewable Energy Penetration

Vci Wind turbine cut-in speed [m/s]

Vco Wind turbine cut-out speed [m/s]

νr Operation and maintenance cost coefficients

Pi Load power

X Vector of uncertain input variables

Y Vector of uncertain output variables
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