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Abstract

In developing heaters typically an induction heater within specific temperature limits can be a key issue impacting the efficiency
of the overall policy, as the typical loading of an induction heater is costly. Mathematical modelling is highly useful in terms
of estimating the rise in temperature and in shedding light on the wider processes. The projected model might in addition
reduce computing prices. The paper develops a 2-Dimensional (2-D) steady state thermal model in polar co-ordinates by
means of finite element formulation and arch shaped components. A temperature time methodology is utilized to calculate
the distribution of loss in various elements of the induction heater and used as input for finite element analysis. Additional
precise temperature distributions are obtained. The projected model is applied to predict the temperature rise within the coil
of the induction heater 3200 W totally encircled fan-cooled induction heater. The temperature distribution was determined
considering convection from the outer air gap surface and circular finish surface for each entirely encircled and semi encircled
structures.
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1. Introduction

In electrical engineering design problems, heating is the
most vital burden that limits design. Heating reduces the
life span of a product considerably. Different types of losses
in induction heater equipment are the main sources of heat.
Beyond predicting heat generation, a proper cooling method
has to be established to limit the heating effect. For this, the
exact point source of the heat is to be determined. To be
specific, in the case of an induction coil, in its normal oper-
ating condition it is not easy to determine the exact region
where the heat is being generated, as it is to be found below
the surface and its high power causes problems for any mea-
suring device. But if it is malfunctioning any an abrupt rise
in temperature must be identified or better predicted before
the temperature builds to a point when jeopardizes the safety
of the insulation. There the problem arises when we need to
determine the exact point where the heat is originated, as the
heat generation may be unequal for a induction heating coil
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when it delivers heat. Now, to solve this problem, differen-
tial equations enjoy some advantages. However, as comput-
ers and microprocessors have developed, various types of
numerical methods are commonly used. The finite element
method, a method that has many advantages over any other
type of solution, is extensively used to solve heat conduc-
tion problems in 2-Dimensional (2-D) and in 3-Dimensional
(3-D). After considering some geometrical restrictions, we
obtain a solution that is almost equal to the original values
and hence this method is advantageous and used in herein.

The paper deals with a basic problem related to heat flow
through the induction coil in common steady state working
conditions. The body of induction coil consisting of copper,
lead, insulations, coolant etc may be considered as a com-
posite. Because of volumetric, line or point source, heat may
be produced in the induction coil. Maximum heat is produced
or generated due to eddy current loss in the induction coil. In
the usual operating condition of the induction heater, heat
is produced continuously in the induction coil [1–3]. If the
induction heater is in a faulty condition, heat can discrete
in the induction coil. The 2-Dimensional (2-D) steady state
finite-element procedure for the thermal analysis of an in-
duction coil provides a chance to conduct in-depth studies
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Figure 1: Cross-sectional area of the coil

Figure 2: Slice of core conductor delimited by two 90◦ inclined planes di-
vided into arc formed components

of coil heating issues using a new, expressly derived arch
part, along with associates economic data and Gauss rou-
tine. A novel two-dimensional finite element procedure with
cylindrical polar co-ordinates and expressly derived answer
matrices was applied to the answer of the heat conduction
equation throughout steady state condition. Though the re-
sults are approximate, the strategy is quick, cheap and leads
itself to immediate visual imaging of the temperature pattern
in an exceedingly 2-Dimensional (2-D) slice of core conduc-
tor (single)bounded by two 90◦ inclined planes divided into
arc shaped elements of the coil.

For this end the heat of the conductor is limited to a def-
inite limit [4–7]. For full solution of the heat [8, 9] distribu-
tion a 2-D cross-sectional area of the single-core induction
coil is calculated to solve the problem [10–12]. The ther-
mal conduction of copper within the core is taken in order
to simplify the calculation. In this numerical analysis, the 2-
Dimensional (2-D) planes divided into arch shaped elements
for symmetry and these are divided into finite elements as
shown in Fig. 2. Throughout the solution region arch shaped
elements are used [13–15]. This is shown in Fig. 2, taken
from Fig. 1 [8, 16].

2. Thermal Constants

For the steady state problem in two dimensions, the following
properties are required for each different element materials:
Thermal conductivity in radial direction Vr (W/◦C). i.e 2.007
for Copper and Insulation Thermal conductivity in circumfer-

Table 1: Parameter to determine Eddy Current Loss

Parameter Value

Constant Dependent upon the Material
(Ke)

0.2

Maximum Flux Density (B2
m), Wb/m2 0.7832

Frequency ( f ), kHz 55
Thickness (t), m 0.1
Area (v), m2 0.196

ential direction Vθ (W/◦C). i.e. 1.062 for Copper and Insula-
tion. A typical set of thermal constants are mentioned above
for copper wires of the induction coil.

3. Calculation Of Eddy Current Loss

Calculating the eddy current loss in the induction coil in
the following:

Pe = KeB2
m f 2t2v

= 0.2 × (0.7832)2 ×
(
55 × 103

)2
× (0.1)2 × 0.196

= 72737.238 W
(1)

4. Convective Heat Transfer Coefficient

Two convective heat transfer coefficients are considered:
forced convection and normal convection for turbulent and
steady state flow in the cylindrical core of the conductor.
These depend upon Reynolds number and the Prandtl num-
ber.
Force Convection

h =
0.026×(Re)0.805×(Pr)1/3

d
×k (2)

Re=PVd/µ

where:k—fluid thermal conductivity, 70 W/m◦C; P—fluid den-
sity, 1.022 kg/m3; V—fluid velocity, 17.5 m/s; µ—fluid viscos-
ity, 2.06 kg/m-s; Re—Reynolds’s number

Re= 16964.70

Re=
1.022 × 17.5 × 0.5

2.06×10−5 = 434101.94

Pr=Cp µ/K= 2.96×10−4

where: Cp—fluid specific heat, 1008.34 J/kg◦C; Pr—Prandtl
number

h = 0.026×(434101.94)0.805×(2.96×10−4)0.33
×70

0.5
= 30009.42 W/m2 ◦C

(3)

Natural Convection

h =
0.53×(GrPr)0.4×k

d
(4)
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Table 2: The heat transfer co-efficient for the cylindrical curved surface of
the conductor

Item Sym-
bol

Value

Fluid thermal conductivity,
W/m◦C

K 70

Hydraulic Diameter, m D 0.5
Fluid density, kg/m3 P 1.022
Fluid velocity, m/s V 17.5
Fluid viscosity, kg/m·s µ 2.06
Reynolds number Re 434101.94
Fluid specific heat, J/kg◦C Cp 1008.34
Prandtl number Pr 2.96×10−4

Heat transfer co-efficient,
W/m2 ◦C

H 30009.42

Grashhoff Number

(Gr) =
gβ(Tω−T∞)×d3

v2 =
9.8×2.89×10−3×600×0.53

(20.03×10−5)2 = 529444796.48

β=
1

T∞
=

1
345.5

= 2.89×10−3

So

h = 0.53×(GrPr)0.4×k
d =

0.53×(529444796.48×2.96×10−4)0.4
×70

0.5
= 830.19 W/m2 ◦C

(5)

To compute the heat transfer coefficient for the rod-shaped
curved surface of the conductor, the Reynolds number and
therefore the Prandtl number calculated on the basis of fluid
thermal conductivity, the hydraulic diameter, fluid density,
fluid velocity, fluid viscosity and fluid heat energy were mea-
sured. Their values are presented in Table 2.

5. Steps Of Solving Finite Element Problem

Regardless of the approach used to find the element prop-
erties, the solution of a continuum problem by the finite ele-
ment method always follows an orderly step-by-step process.

Step-1: Discretize the continuum: The continuum in the
solution region is divided into elements.

Step-2: Select Interpolation Function: Each element is as-
signed nodes, and the interpolation function is chosen to rep-
resent the variation of the field variable over the element. A
polynomial is often selected as an interpolation function as it
is easy to integrate and differentiate, the degree of the poly-
nomial depending on the number of nodes assigned to the
element.

Step-3: Find the Element properties: The matrix equations
expressing the properties of individual elements are deter-
mined. For this, we may use one of the four approaches
mentioned earlier.

Figure 3: 2-Dimensional (2-D) heat conduction domain

Step-4: Assemble the Element properties to obtain the
system equations: The matrix equations are combined to
obtain the behavior of the entire solution region.

Step-5: Solving the System equation: The assembly pro-
cess in step-4 needs a set of simultaneous equations which
can be solved to obtain the unknown nodal values of the field
variable, after assigning the boundary conditions.

Step-6: Make additional computation if desired: Some-
times it may require using the solution of the system to cal-
culate other important parameters.

6. 2-D Steady State Heat Conduction In Cylindrical Polar
Co-Ordinates

The problem concerns the steady state temperature distri-
bution and heat conduction in a 2-Dimensional (2-D) domain
as defined in Fig. 3. The governing differential equation for
temperature distribution is expressed in general forms as,

q = −V∇T (6)

∇ · q = Q (7)

Here, T is the potential function (Temperature), ◦C; V is the
medium permeability (Thermal conductivity), W/m◦C; q is
the flux (heat flux), W/mm2; Q is the forcing function (Heat
source).
Combining equations (6) and (7), one obtains the general
partial differential equation describing the 3-Dimensional (3-
D) heat conduction problems.

∇ · (V∇T ) = −Q (8)

In cylindrical polar co-ordinates, the equation above can be
expressed as,

1
r
δ

δr

(
Vrr

δT
δr

)
+

Vθ

r2

δ2T
δθ2 +Q= 0 (9)

Vr, and Vθ are thermal conductivities in the radial and cir-
cumferential directions respectively.
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Figure 4: 2-D Arch Shaped Element

6.1. Finite Element Equations (Galerkin’s Method):

The solution of equation (9) can be obtained by assuming the
general functional behavior of the dependent field variable in
some way so as to approximately satisfy the given differential
equation and boundary conditions. Substitution of this ap-
proximation into the original differential equation and bound-
ary conditions then results in some error, called a residual.
This residual is required to vanish in some average sense
over the entire solution domain.
The approximate behavior of the potential function within
each element is prescribed in terms of their nodal values and
some weighted functions N1, N2 ... so that,

T=
∫

i=1, 2, ...m
NiTi (10)

The weighting functions are strictly functions of the geome-
try and are termed interpolation functions. The interpolation
functions determine the order of the approximating polyno-
mials for the heat conduction problem.
The methods of weighted residuals determine the m un-
knowns Ti in such a way that the error over the entire solution
domain is small. This is accomplished by forming a weighted
average of the error and specifying that this weighted aver-
age vanishes over the solution domain.
The required equations governing the behavior of an element
are given by the expression,∫

D(e)
Ni

[
δ

δr

(
Vr
δT (e)

δr

)
+
δ

δθ

(
Vθ

r2

δT (e)

δθ

)
+Q

]
rdrdθ= 0 (11)

Equation (11) expresses the desired averaging to the error
or residual within the element boundaries. But it does not
admit the influence of the boundary. Since we have made
no attempt to choose the Ni so as to satisfy the boundary
conditions, we must use integration by parts to introduce the
influence of the natural boundary condition.

6.2. Arch Element Interpolation Function

Consider the arch shaped element of Fig. 4, formed by
circle arch radii a, b. Radii inclined at an angle of 2α.
The interpolation function can now be defined in terms of
a set of non-dimensional co-ordinates by non-dimensional
cylindrical polar co-ordinates r, θ using,

ρ = r/a; v = θ − π/2/α (12)

Figure 5: Non-Dimensional Arc element

The arch element with non-dimensional co-ordinates is
shown in Fig. 4 and Fig. 5.
The temperature at any point within the element is given in
terms of its nodal temperature by

T = T ANA + T BNB + TCNC + T DND (13)

Here the N’s are the interpolation functions chosen as fol-
lows.

NA=
(ρ− b

a )(v−1)
−2(1− b

a ) ; NB=
(ρ− b

a )(v+1)
2(1− b

a ) ;

NC=
(ρ−1)(v+1)
−2(1− b

a ) ; ND=
(ρ−1)(v−1)

2(1− b
a )

(14)

It is seen that the interpolation functions satisfy the following
conditions.

1. At any given vertex ’A’, the corresponding interpolation
function NA has a value of unity and other shape func-
tions NB, NC have a zero value at this vertex thus at
node j, N j = 1 but Ni = 0; where i = j.

2. The value of potential varies linearly between any two
adjacent nodes on the element edges.

3. The value of the potential function in each element is
determined by the order of the finite element. The or-
der of the element is the order of the polynomial of the
spatial co-ordinates which describes the potential within
the element. The potential varies as a quadratic func-
tion of the spatial co-ordinates on the faces and within
the element.

6.3. Boundary Condition
We consider the portion of the conductor bounded by a plane
passing through the center of a single core and another
plane which is 90◦ displaced clockwise from the previous
plane. The temperature distribution is assumed symmetrical
across two planes, with the heat flux normal to the surface
being zero. From the other two boundary surfaces heat is
transferred by convection to the surface. The boundary con-
ditions may be written in terms of δT/δn, the temperature
gradient normal to the surface.
Mid core horizontal surface

δT
δηh
= 0 (15)

Mid core vertical surface
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Table 3: Nodal temperatures in induction coil

Node
numbers

Free convection
temp., ◦C

Forced convection
temp., ◦C

1 195.64 155.78
2 174.98 136.73
3 149.22 114.06
4 125.13 93.71
5 104.06 76.64
6 86.03 62.46
7 70.21 50.06
8 195.46 155.63
9 182.28 143.26
10 161.79 124.42
11 138.79 103.68
12 115.33 83.19
13 93.22 64.80
14 74.01 50.17
15 194.94 155.18
16 199.96 159.39
17 200.56 158.43
18 192.54 148.52
19 175.10 129.06
20 148.21 100.23
21 112.23 62.54
22 194.62 154.89
23 210.32 168.97
24 226.69 182.20
25 232.26 183.33
26 223.52 168.33
27 195.92 133.28
28 146.60 74.78

δT
δηv
= 0 (16)

Conductor surface

h (T − Tc) = −Vr
δT
δηc

(17)

where: T—Surface temperature and TC—conductor surface
temperature.

7. Statistical Analysis & Performance Of Solution

The steady state response of the coil of induction heater
was scientifically determined with its surface temperature
mounted at a potential temperature of 200.56◦C. Heat was
transferred from the surface by natural convection to the en-
circling space and therefore the resolution was compared.
The temperature distribution is more realistic in the case of
convection than in the case of the assumed extreme tem-
perature on the boundary. The temperature distribution of
the 2-Dimensional (2-D) core conductor of the coil at steady
state, in each cases, was numerically obtained then the heat

Figure 6: Node vs Temperature

transfer co-efficient was calculated at the mean of the tem-
peratures as tabulated below in Table 3. Fig. 6 shows tem-
perature variations with completely different nodal points on
the coil free convection and forced convection temperatures
after the same current passes through the coil. The system
of global equations, as determined by equation, should be
resolved to determine the nodal temperatures. The answer
to this set of linear equations is given by the Gauss method-
ology.

8. Conclusion

The 2-Dimensional (2-D) steady state finite-element pro-
cedure for the thermal analysis of induction coil is a useful
approach to conducting in-depth studies of coil heating is-
sues, in particular with the new, expressly derived arch part,
along with associated economic data and Gauss routine. A
novel two-dimensional finite element procedure in cylindri-
cal polar co-ordinates, with expressly derived answer ma-
trices, was applied to resolve the heat conduction equation
under steady state conditions. Though the results are ap-
proximate, the strategy is quick, cheap and leads itself to
immediate visual imaging of the temperature pattern in an
exceedingly 2-Dimensional (2-D) slice of the core conductor
(single)bounded by two 90◦ inclined planes divided into arc
shaped elements of the coil.
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