Numerical Study of a Hybrid Photovoltaic Power Supply System

Abdelkader Gourbia,*, Imen Boumahaa, Mostefa Brahimia, Amar Tilmatineb

a ICEPS laboratory, Djillali Liabes University of Sidi Bel Abbes, Algeria
b APELEC Laboratory, Djillali Liabes University of Sidi Bel Abbes

Abstract
This paper aims to analyze a hybrid photovoltaic system for production of electrical energy associated with a storage system to be employed in an isolated site. Mathematical models were proposed describing the physical operation of each part of the studied system, according to the meteorological conditions or the estimated data. Then programs developed with Matlab software were carried out to simulate the influence of various parameters on each element of the conversion chain. The results obtained have shown a good and accurate simulation of the energy behavior of the complete system and can be used to give answers to many questions about this type of installation and to help manufacturers make the right decisions.

Keywords: Photovoltaic hybrid systems, Renewable energy, Diesel, battery storage system, Modeling and simulation,

1. Introduction
Renewable energy is currently considered as one of the most efficient solutions to the energy problems in the world. Among the several renewable energy sources there are wind, marine, oceanic flows, geothermal, solar and photovoltaic. This latter has many advantages: nonpolluting, free, silent, no rotating parts, independent dimensions. However, purely photovoltaic systems associated with a storage battery face major variation in terms of production due to the intermittent time conditions and it must be oversized to supply all types of loads with sufficient reliability, but the investment costs will be in consequence higher.

The PV generator interconnection with other energy sources (wind, diesel fuel, hydroelectric) in a Hybrid Energy System (HES) can have a beneficial impact on the production of electrical energy in terms of cost and availability.

The first hybrid power systems village comprising a PV and a diesel generator was installed on December 16, 1978 in Papago Indian Village, Schuchuli, Arizona, USA. The power produced by the system was used to provide electricity for the community’s needs: refrigerator, washing machine, sewing machine, water pumps and lights, until an electric grid was extended to the village in 1983 [1, 2].

Research on Hybrid Power Systems based on renewable sources started about 30 years ago. The first papers appeared in the mid-eighties [3], but literature on hybrid systems did not blossom until the early 1990s [4].

*Corresponding author

Email address: aekett@yahoo.fr (Abdelkader Gourbi)
vice and can operate in standalone mode or grid connected mode [17, 18].

The system to be modeled is composed of the following equipments as shown in Fig 1:

- A photovoltaic generator
- A diesel generator
- A storage system
- An inverter
- An electrical load

In this work, we opted for the parallel configuration because it offers more advantages compared to other configurations [19, 20], in which the system works in standalone mode and has to supply an average load of 4600 Wh/d.

Using the parallel configuration shown in Fig. 1, all energy sources may supply the load separately at low or medium load demand, as well as to supply peak loads from combined sources by synchronizing the inverter with the alternator output waveform. The bi-directional inverter can charge the battery bank (rectifier) when excess energy is available from the diesel generator, and can function as a DC-AC converter (inverter) under normal operation. The bi-directional inverter may provide peak shaving as part of the control strategy when the diesel generator is overloaded [20].

The technical data of each component of the analyzed system are presented in table 1.

3. Mathematical equations

The intermittent nature of renewable energy sources and its randomness and the large number of system configurations and equipment contribute to complicate the design and operation process of the hybrid system. Consequently, the models need to be defined to simulate the complex behavior of these composite systems.

In this section we present the models of each element of the system described in the previous section.

3.1. PV generator Model

Singer model was used for modeling the PV generator [21].

This model is based on an equivalent circuit of a photovoltaic cell (Fig. 2) which comprises a current source that models the conversion of light flux into electrical energy, a shunt resistance R_p representing the surface quality along the cell periphery, a series resistance R_s which arises from the ohmic contact between metal and semiconductor internal resistance and a parallel diode which models the PN junction [22–29].

The current I generated by the cell is given by Kirchhoff’s law:

$$ I = I_{ph} - I_j - I_p $$ \hspace{1cm} (1)

The current I_p flowing in the shunt resistor and the junction current I_j are given by equations (2) and (3) respectively.

$$ I_p = \frac{V + IR_s}{R_p} $$ \hspace{1cm} (2)
The generator power is given by the following equation:

$$P_{pp} = I_G \cdot V$$ \hfill (9)

3.2. Storage Battery Model

CIEMAT model was used for modeling the storage battery [30, 31]. This model is based on the electrical diagram presented in Fig. 3, according to which the battery is described with two elements only (whose characteristics depend on a set of parameters): the voltage source and the internal resistance.

For the n_b series cells, the following equation of the battery voltage is used:

$$V_{bat} = n_b \cdot E_b + n_b \cdot R_i \cdot I_{bat}$$ \hfill (10)

where V_{bat} and I_{bat} are the battery voltage and current (according to the receptor convention), E_b is the electromotive force which depends on the battery state of charge (denoted SOC), and R_i is the internal resistance of an element.

The capacity model yields the quantity of energy C_{bat} that the battery can restore, according to the average discharge current $I_{bat,ave}$ [30, 31]. The corresponding expression is established beginning with the I_{10} current, relative to operating mode C_{10} (with this value representing battery capacity over a discharge regime at constant current during 10 hours: $C_{10} = 10 \cdot I_{10}$).

$$C_{bat} = \frac{1.67}{1 + 0.67 \cdot (\frac{I_{bat}}{I_{bat,ave}}) \cdot (1 + 0.005 + \Delta T)}$$ \hfill (11)

where ΔT is the accumulator heating assumed to be identical for all elements and calculated with respect to the reference ambient temperature of 25°C. C_{bat} is used as a reference to determine battery SOC, which will then be formulated according to the quantity of lacking battery charge, Q_{bat}.

$$SOC = 1 - \frac{Q_{bat}}{C_{bat}}$$ \hfill (12)

The temporal evolution of "Q_{bat}" depends on the battery operation (increases in discharge mode and vice versa). The estimation of Q_{bat} is carried out by using Coulomb law:

$$Q_{bat} = I_{bat} \cdot t$$ \hfill (13)

where: "t" is the battery operating duration with a current "I_{bat}".

The expression for battery voltage has been derived from Equation (11) above as a function of its charge (index "c") or discharge (index "d") regime. This set-up thereby leads to a structure tied to both of the battery’s internal elements: the electromotive force and the internal resistance [30–32]:

$$V_d = n_b \cdot (2.085 - 0.12 \cdot (1 - SOC)) - n_b \cdot \left[\frac{I_{bat}}{C_{bat}} \right] \cdot \left[\frac{1}{1 + 0.27 \cdot (1 - SOC)} \right] + 0.02 \cdot (1 - 0.007 \cdot \Delta T)$$ \hfill (14)

$$V_c = n_b \cdot (2 + 0.16 \cdot SOC) + n_b \cdot \left[\frac{I_{bat}}{C_{bat}} \right] \cdot \left[\frac{1}{1 + 0.37 \cdot SOC} \right] + 0.036 \cdot (1 - 0.025 \cdot \Delta T)$$ \hfill (15)
3.3. Diesel Generator Model

The diesel generator (DG) is a diesel engine coupled to a synchronous generator. This system includes a speed control on the diesel engine that operates by adjusting the fuel flow in order to maintain constant the engine rotation speed and the electrical frequency at the generator output. The frequency of the network is directly related to the generator rotation speed and is therefore maintained at the desired level [33].

In a hybrid system, the DG can generate the rated power requested by the load while the excess energy will be used to charge the batteries.

The energy produced by a DG is expressed as follows [34]:

\[E_{DG} = P_n \cdot \eta_{ge} \cdot t \]

where: \(\eta_{ge} \) — the DG efficiency, \(t \) — the DG operating duration, \(P_n \) — the DG rated output power.

A diesel generator is generally characterized by its fuel consumption (hourly in l/h or specific in l/kWh). The diesel generator hourly consumption can be expressed as follows [35]:

\[q(t) = a \cdot P_{ge}(t) + b \cdot P_n \]

where “a” (l/kWh) and “b” (l/kWh) are the constant characteristics of the diesel generator, \(P_{ge} \) (kW) is the diesel generator power generated at a given time \(t \) and \(P_n \) (kW) is the rated generator power [35–37].

The coefficients obtained for our generator are: \(a = 0.245 \) (l/kWh) and \(b = 0.0689 \) (l/kWh) with a coefficient of determination \((R^2) \) equal to 0.996. (these coefficients were obtained through the statistical method of least-squares [38] based on the experimental data given by the manufacturer in the data sheet of the diesel generator: fuel consumption at 100% of \(P_n = 2.08 \) l/h, at 75% of \(P_n = 1.65 \) l/h, at 50% of \(P_n = 1.29 \) l/h, at 25% of \(P_n = 0.85 \) l/h).

3.4. Converter Model

The inverters are static converters which enable an AC voltage source (at the output) to be obtained from a DC voltage source (at the input) [36].

The inverters are characterized by their efficiency, which is a function of the delivered output power and is given by the following expression:

\[\eta_{inv} = \frac{1}{1 + \frac{\Delta P}{P_s}} \]

where: \(\Delta P \) — inverter losses, \(P_s \) — inverter output power.

3.5. Load model

There are two types of load consumption:

- Constant load: the power variation as a function of time is a straight line.
- Variable Load: is represented by the variable and continuous demand during the day, the month or during the year.
the PV generator performs a better operation (high electrical efficiency and high power output) in a low-temperature rather than a high-temperature environment (Fig. 5.b). These results are in accordance with the experimental results published by many authors in this field [21–29].

Moreover, the results show that the P-V characteristic of the PV generator is nonlinear and changes with irradiation and temperature. There is a point on the V-P or V-I characteristic, called the Maximum Power Point (MPP), at which the PV generator operates with maximum efficiency and produces its maximum output power. Moreover, using a MPPT controller serves to improve the performance of the PV generator [40]. The Maximum Power Point Tracking (MPPT) techniques are used to maintain the PV generator operating point at its MPP. Therefore, this technique is of great importance for maximizing the energy produced by the PV generator. This will increase the penetration of renewable energy source in the entire hybrid system.

Figs 6–8 show the simulation results related to the influence of the temperature on the capacity, state of charge (SOC) and the battery voltage for three different values of the temperature (25, 40 and 50°C).

As seen in Fig. 6, the capacity decreases as the discharge current is increased, this is mainly due to the internal resistance of the battery (Peukert Effect). This latter increases during discharging mode because there is less reactive product in the electrolyte. Thus, if the discharge current increases, the capability and the discharge duration decrease. So the more slowly the battery is discharged, the more it is able to provide the necessary energy for the hybrid system.

Moreover, the increase in temperature causes a moderate rise in the storage capacity. The capacity reaches its minimum of 1650 Ah at 25°C while it increases up to 1900 Ah at a temperature of 50°C. When the temperature increases the internal resistance of the battery lowers since the ion mobility in the electrolyte increases with temperature and therefore the capacity increases [30].

Therefore, it’s highly recommended that the manufacturers and the installers of such systems take into consideration the climate (temperature) of the site and the application (load profile) for which the various pieces of equipment are intended in order to obtain a maximum efficiency.

Fig. 7 represents the variation of the SOC versus the capacity for different values of temperature.

For the same capacity of 1500 Ah for instance, in the case of the charge mode, temperature increase causes SOC to decrease: at 25°C SOC is equal to 80%, while it decreases to 55% at 50°C. However, in the case of the discharge mode, a temperature rise is followed by an increase in SOC: SOC is equal to 20% at 25°C and increases to 40% at 50°C.

On the other hand, when the charge rate increases by in-
creasing either the operating duration "h" or the current "A", i.e. the capacity "Ah", the SOC increases and vice versa.

These conditions can lead, in the framework of battery maintenance, to a better monitoring in the studied site and a better optimization.

Figs 8.a and 8.b show the variation of current versus the voltage for different values of temperature for both cases of charge and discharge respectively.

For the same current of 50 A for example, in the charge mode (Fig. 8.a), the battery voltage decreases with temperature (V= 28 V at 25°C and V= 26 V at 50°C). On the other hand, in the case of the discharge mode (Fig. 8.b), the battery voltage increases with the temperature (V= 22 V at 25°C while V=23 V at 50°C).

Consequently, the battery voltage plots are affected by temperature as is the SOC, for both cases of charge and discharge modes.

Thus, since the SOC of the batteries depends on their voltage, it is used as an indication parameter in the battery charge controllers. During the charging phase, the solar charge controller needs to know when the battery is fully charged to ensure timely protection against overcharging. When discharging the battery, it is also important to know the state of charge in order to ensure protection of the battery against harmful deep discharge. Therefore, there are various criteria which can indicate the charge level of the battery at any time. Some of these criteria are better suited than others, and the simplest and most common one is the battery voltage. With this method, a fixed charge cut-off voltage is defined. When this voltage is reached, charging is stopped. A fixed deep discharge threshold is also defined. If the battery voltage falls below this value, the load is switched off. This method is simple, since the voltage of the battery is easy to measure precisely.

Using this method, a fixed voltage of end charging is defined. When this voltage is reached, charging is stopped. Moreover, a fixed deep discharge voltage is also set. If the battery voltage falls below this value, the load is disconnected. This method is simple, since the voltage of the battery is easy to measure accurately.

Fig. 9 shows the efficiency of the inverter as a function of the power demand \(P_s \) for 2 different values of power losses.

We note that efficiency decreases with increasing losses, and the inverter must operate near its rated power for better performance.

There are several factors which affect the inverter losses:

- Own inverter loss: due to its components, such as the transformer, the semiconductor material, the resistance and other components.
- Temperature inverter loss: Inverters, like all semiconductor-based equipment, are sensitive to overheating and, in general, operate better at cooler temperatures, while power losses and damage occur at higher internal temperatures.
- Inverter Loss due to the power threshold: when the power of the PV (or battery) is not sufficient to start the inverter.
- Inverter Loss due to power overcharging: when the MPP power is higher than the input power required for obtaining the specified \(P_{\text{inv}} \) (AC), the inverter displaces the operating point on the I-V curve in order to obtain exactly the power required for \(P_{\text{inv}} \) (AC). This loss value represents the difference between \(P_{\text{mp}} \) and this adjusted power. The displacement is achieved towards higher voltages. Consequently, if the voltage exceeds the \(V_{\text{max}} \) limit of the inverter, the inverter stops and the \(P_{\text{mp}} \) is fully lost.
- \(V_{\text{min}}/V_{\text{max}} \) Inverter Loss: If \(V_{\text{mp}} \) is outside of the inverter’s window (\(V_{\text{mpmin}}/V_{\text{mpmax}} \)) the inverter will clip it to the limit value. This loss is the difference between \(P_{\text{mp}} \) and the corresponding P on the I-V curve at the limit value.

As seen in Fig. 10 when the diesel generator is requested to supply a load of around 20% of its nominal power, its consumption is very high (0.64 l/kWh). However, for heavy loads (higher than 80% of \(P_n \)) its consumption is equal to 0.324 l/kWh. Thus considerable fuel economies and a good efficiency may be obtained when the DG operates near this load fraction. These obtained results are in agreement with those obtained by other authors [35].
5. Summary/Conclusions

In the framework of this paper different components of a hybrid photovoltaic system were simulated following the proposed mathematical model depending on the meteorological conditions or the estimated data.

The results show that:

1. The P-V characteristic of the PV generator is nonlinear and changes with irradiation and temperature, and the PV generator performs better in a low-temperature rather than at high-temperature environment.

2. The more slowly the battery is discharged, the more it is able to provide the necessary energy for the hybrid system.

3. Temperature has a great influence on battery performance: in discharge mode a temperature increase causes an increase in capacity, SOC and voltage, however, in charge mode the opposite is true.

4. The battery voltage is affected by temperature as is the SOC, for both cases of charge and discharge modes.

5. The manufacturers and the installers of such systems take into consideration the site and application (load profile) for which these pieces of equipments are intended in order to obtain a maximum efficiency.

6. The inverter must operate near its rated power for better performance.

7. Considerable fuel economies and a good efficiency may be obtained when the DG operates near its rated power.

For maximum efficiency of the entire system, it is necessary to establish an energy transfer management system that optimizes the operation of each component of the system while respecting their operating range. This will be the objective of a future work.

Indeed, the results can be used to give answers to many questions about this type of installation and to help manufacturers make the right decisions.

References

