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Abstract

Artificial intelligence algorithms have become a research

hotspot in attempts to reduce NOx emissions in gas burners

through NOx emission modeling and optimizing operating pa-

rameters. This paper compres the predictive accuracy of NOx

emission models based on LSSVM, SVR and ELM. CGA and

three other GA based hybrid algorithms proposed to modify

CGA were employed to optimize the operating parameters of

a 30MW gas burner in order to reduce NOx emission. The

results show that the NOx emission model built by LSSVM is

more accurate than that of SVR and ELM. The mean relative

error and correlation coefficient obtained by the LSSVM model

were 0.0731% and 0.999, respectively. Among the four opti-

mization algorithms, the novel TSGA proposed in this paper

showed its superiority over the other three algorithms, excelling

in its global searching ability and stability. The LSSVM plus

TSGA method is a potential combination for predicting and

reducing NOx emission by optimizing the operating parameters

for the gas burner on-line.

Keywords: NOx emission modeling, Operating pa-
rameters optimization, TSGA, Hybrid algorithm, Gas
burner

1. Introduction

Combustion of natural gas is currently an impor-
tant energy source in thermal power engineering and
will be increasingly popular in the future since it is
cleaner than coal [1]. However, undesirable emissions
will occur if the gas burner is working in inappropri-
ate operation parameters. One significant pollutant
impacting the global atmosphere is Nitrogen Oxides
(NOx) caused by natural gas combustion. Statistics
show that coal combustion emits about 7.7 million
tons of NOx, about 70% of the atmospheric emis-
sions of NOx, into the atmosphere, which in China
alone leads to costs in excess of $13.3 billion every
year. As a main element of air pollution, NOx causes
serious respiratory diseases and a range of negative
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environmental effects. For instance, it is a leading
factor in the formation of photochemical smog, which
causes severe damage to the organs of many creatures
and to crops [2]. Therefore, controling NOx emissions
is a worldwide concern, as the utilization of fossil fu-
els continues to increase and natural gas combustion
will have to satisfy increasingly rigorous emission stan-
dards in the future.

Many measures can be employed to reduce emission
of NOx from gas burners, such as operating parame-
ters optimization, air-staged combustion, microwave-
induced NOx reduction, and high-temperature air
combustion [3]; [4]; [5]; [6]; [7]. Among them, op-
timization of operating parameters has demonstrated
its potential to reduce NOx emissions in gas burn-
ers due to its low cost and high-efficiency advantages
over other methods. Operating parameters optimiza-
tion includes two important and separate steps, i.e.
NOx emission modeling and NOx emission optimiz-
ing [8] . The first essential problem, which is a pre-
requisite for the second step, is how to model NOx
emission accurately. Once a NOx emission model is
built, NOx emissions can be controlled to a certain ex-
tent through regulating the inputs of the model. Un-
fortunately, the concentration of NOx emitted from a
gas burner is influenced by multiple operating parame-
ters of the boiler and their relationship is complicated
and highly nonlinear [9] . The theoretical model has
shown itself to be extremely difficult to determined to
date. Therefore, conventional regression methods are
not suitable due to their theoretical limitations such
as the problem of precise extent and time cost. With
advances in computer technology and artificial intel-
ligence (AI), a large amount of literature covers the
application of various machine learning algorithms to
solve this highly nonlinear modeling problem [10].

During the past thirty years ANN (Artificial Neural
Network), a typical machine learning approach, has
been developed to maturity in extensive fields of re-
search and has been widely employed to model NOx
emission for combustion systems due to its outstand-
ing nonlinear mapping ability [11]; [12]; [13]; [14];
[15]. The radial basis function (RBF), back propa-
gation (BPNN), GRNN (generalized regression neu-
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ral network) and time delay neural networks were de-
veloped to model pollution emission from coal-fired
power plants, internal engine and other energy sys-
tems. An extensive and excellent review of artificial
intelligence for combustion modeling and pollutant
control was made by Kalogirou [16]. ANN models
have shown their advantages compared with the con-
ventional regression methods and other methods that
are based on complex combustion theory such as CFD
(computational fluid dynamics) technique [17]; [18].
However, some insuperable weaknesses occurred with
the current application of ANN-based NOx emissions
modeling [19]. First, ANN models suffer from some
shortcomings including: needs for numerous control
parameters, uncertainty in solution (network weights)
and danger of overfitting. The parameter calibration
procedure is a trial-and-error process, which is time-
consuming and stochastic. It seriously restricts the
capacity of ANN-based online application. Moreover,
the correctness and generalization of the ANN model
depend to a great extent on the sufficiency and rep-
resentativeness of the training data, which takes a
large amount of time and money to obtain. There-
fore, ANN-based models should be improved though
practical use in the energy field.

More recently, another computational intelligence-
based method called support vector regression (SVR)
was proposed by Vapnik to overcome the drawbacks
of ANN and to better solve the highly nonlinear prob-
lems [20]; [21]. Another study demonstrates that SVR
is a better alternative to the ANN- based model and
can predict complex process in many fields [22]; [23].
SVR was also successfully used in NOx modeling [24].
In such studies, the SVR based modeling technique
showed a more powerful ability to model the highly
nonlinear relationships between the multitudinous op-
erating parameters of a coal boiler and its NOx con-
centrations. More recently, a modified version of SVM
named least squares-SVM (LS-SVM) was introduced
by Suykens and Vandewalle. Compared with SVM,
LSSVM usually needs less run time and shows more
self-adapting ability than SVM because of an added
equality constraint-based formulation. As with SVM,
LSSVM has also been employed widely to problems in
many sectors of industry such as the asphaltene de-
position problem [25]. Therefore, LSSVM will be the
preferred approach to build the model of NOx emis-
sion from gas burners. This model is vitally important
as it forms the basis of the following parameters op-
timization.

After the model is established, the second step is to
find the most suitable combination of operating pa-
rameters, which can optimize NOx emission by search-
ing algorithms. In order to satisfy actual on-line ap-
plication, the optimization algorithms must have the

ability to produce high-quality solutions and quickly
converge. Since the NOx reduction approach is a
multivariable and non-linear problem that needs quite
a lot of time to achieve ideal answers, novel meth-
ods should be employed in the searching process. In
a huge amount of literature, evolutionary algorithms
(EAs) have been proved to be sufficiently powerful
tools to deal with the problem studied in this paper
and can overcome the disadvantage of conventional
optimization algorithms.

Genetic algorithm (GA) is one of the typical EAs.
GA, which provides an approach to search the opti-
mal solutions, is a calculation model that simulates
natural selection based on the theory of evolution and
the evolutionary mechanism of genetics. During the
GA search progress, the initial population was estab-
lished randomly and evolved continuously by selec-
tion, crossover and mutation. With evolution, high-
quality genes are retained and low-quality ones re-
moved. Therefore, the new generations created will
improve until they satisfy certain conditions. GA,
which has the characteristic of implicit parallelism and
good global searching ability, has been widely used in
various optimization processes, including combustion
optimization [26]. Related research includes improv-
ing the yield of diesel and kerosene [27], determining
dew point pressure [28] and predicting dissolved cal-
cium carbonate concentration [29]. In these studies,
GA has exhibited its powerful ability to optimize the
design and operating parameters of a range of indus-
trial equipment. However, GA has also shown some
insurmountable shortcomings during the application
process. The two major weaknesses are premature
convergence and time-consuming process to find the
final solution. Therefore, different hybrid algorithms
which combine characteristics of GA and other opti-
mization algorithms are proposed in order to adjust
the evolution speed and searching range of GA.

SAGA, PSOGA and TSGA are three novel GA-based
modified algorithms by adding the theory of SA (sim-
ulated annealing algorithm), PSO (particle swarm op-
timization) and TS (tabu search) into the searching
method of GA. These three modified algorithms are
able to improve the weaknesses of GA through modify-
ing the search steps. SAGA controls the evolutionary
rate of GA by simulating the thermal balance theory
of metal annealing process while PSOGA absorbs the
crossover and mutation ideas of GA in order to accel-
erate convergence [30]. And TSGA which extends the
search range of GA because of the tabu list search-
ing technique is also a potential algorithm. PSOGA
and TSGA have never been employed to reduce NOx
emission for gas burner while SAGA has shown its su-
periority NOx reduction of coal-fired boilers [1]; [31] .
Therefore, it is meaningful to introduce these two al-
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gorithms into combustion optimization and compared
them with SAGA.

2. Description of the burner and
data preparation

The experimental installation used in this paper
is composed of a 30MW gas burner whose type is
RPD80G-EU and its matched boiler. The standard
natural gas was employed and experimental data is
including the concentrations of NOx and the corre-
sponding operating parameters of the system. Exper-
iment was carried out after the boiler was adjusted to
use the standard natural gas suitably so that the boiler
can run smoothly. Concentrations of NOx emitted
were monitored continuously by a sensitive NOx de-
tector in the flue outlet of the boiler. The experimen-
tal data employed in this research were all acquired
under stable operating conditions. The operating pa-
rameters which are likely to influence NOx emission
were recorded by the real-time monitoring system of
the gas burner.

There are totally 400 groups of data that were col-
lected after the experiment. Among them, 200 repre-
sentative cases which have greater diversity with each
other were selected for this research. For the selected
200 cases, the concentrations of NOx vary from 13.37
ppm to 45.54 ppm, as shown in Fig. 1. These 200
tests were carried out by changing the boiler load in
the range of 7-33 MW, primary air pressure in the
range of 0.31–6.5 kPa, secondary air pressure in the
range of 0.2–6.8 kPa, and the downstream pressure of
gas valve in the range of 13–14 kPa, respectively. The
measured NOx concentrations and the corresponding
operating parameters were in a large dynamic range
which was enough to build a representative model.

Figure 1: Monitored concentrations of NOx

3. Modeling of NOx emission

3.1. Least squares support vector ma-
chine

Support Vector Machine (SVM), introduced by Vap-
nik and his co-workers, is generally known as a strong
mathematical approach to establish an accurate and
comprehensive relationship between the variables of a
certain mathematical problem.

Least squares-SVM (LS-SVM), introduced by
Suykens and Vandewalle, is a modified version of
SVM. LS-SVM has wide application in both regres-
sion and classification cases. Compared with SVM,
LSSVM usually needs less run time and shows more
adaptivity. Moreover, LSSVM possesses more char-
acteristic because it employs an equality constraint-
based formulation instead of quadratic programming
techniques.

In LS-SVMs, the regression is expressed as given
below:

minω,ξ,b J(ω, ξ) 1
2w

Tw + γ 1
2

∑M
j=1 ξ

2
j

s.t. ηj = wϕ(Vj) + b+ ξj j = 1, 2, · · · ,M

where w is the weight of regression. ξ is
the random error of the optimization problem and
ξj(j=1,2,L. . . M) represents the random error of the
jth vector γ, which represents the regularization pa-
rameter, is a positive number. The nonlinear mapping
function is denoted as ψ(g), while the deviation is de-
noted as b.

The Lagrangian equation is defined as follows:

L(w, b, ξ, a) = J(w, ξ)−
M∑
j=1

αjwϕ(Vj) + b+ ξj − ηj

where α is the Lagrangian multiplier. If the La-
grangian equation is differentiated with respect to w,
b, αi and ξi, the following relationships are obtained
after applying the conditions:


dL
dw = 0→ w =

∑M
j=1 αjϕ(Vj)

dL
db = 0→

∑M
j=1 αj = 0

dL
dξj

= 0→ αj = γξj
dL
dαj

= 0→ wϕ(Vj) + b+ ξj − ηj = 0

After the formula (3) is simplified and the kernel
function, which meet the Mercer condition, is defined
as:
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K(Vj , Vk) = ϕ(Vj)ϕ(Vk) j, k = 1, 2, · · ·M

the question is converted to solve the unknown vari-
ables α and b:

[
0 amp; e
eT amp; Ω + γ−1I

] [
b
α

]
=

[
0
η

]
[

0 amp; e
eT amp; Ω + γ−1I

] [
b
α

]
=

[
0
η

]
where I is the M dimension unit matrix,

η = [η1, η2, · · · , ηM ]T

α = [α1, α2, · · · , αM ]T

e = [1, · · · , 1]
Ωjk = K(Vj , Vk) = ϕ(Vj)ϕ(Vk) j, k = 1, 2, · · · ,M

After α and b is obtained, the following relationship
is found as the final result:

y(V ) =

M∑
j=1

αjK(V, Vj) + b

Kernel functions K(Vj ,Vk ) result in determina-
tion of the dot product within a high-dimension fea-
ture space where the low-dimension space input data
are used without the transfer function φ. The most
usual kernel functions are polynomial, Gaussian-like
or some particular sigmoids. In this paper, RBF is
defined as:

K(xi, xj) = exp(−‖xj − xi‖2 /2σ2)

where σ introduces a positive real number, taken into
account as the kernel function.

3.2. Training process of LSSVM

NOx formation is the result of the complex and
dynamic combustion process. From the up-to-date
literature, there comes a conclusion that only the pri-
mary variables, i.e. fuel and airflows, which have a
direct impact on the combustion process, couldn’t be
able to establish a stable and precise model. The
data related to chemical reactions, quality of air-to-
fuel mixing in boilers, changes in fuel quality, etc. are
usually not available. And the calibration situations
of boilers which have some degree of uncertainty also
influence the NOx emission. These are the reasons

that the primary variables alone cannot suffice for an
accurate NOx prediction. Some other variables that
indirectly describe the calibration situations of boiler
such as CO concentration and temperature of the flue
gases are considered as the input of LSSVM in or-
der to improve the NOx model. In this respect, the
superiority of models including the indirect variables
were verified by comparing the accuracy of models
with that are only considering the primary variables.
Building a LSSVM model includes two steps, training
and test. To do this, the total 200 cases were ran-
domly classified into two subsets, the training subset
containing 100 cases and the test subset containing
another 100 cases. The training subset was used to
establish the mathematical relationship between the
concentration of NOx and the selected variables. In
this paper, the LSSVM toolkit, which is running on
MATLAB software and providing comprehensive func-
tions for LSSVR classification, regression, and param-
eter optimization, was employed to build and train the
LSSVM model.

During the training process, the selection of con-
trol parameters, including kernel function parameter
g, penalty factor C, and loss function parameter ε,
must be carefully confirmed because they also have a
significant impact on the accuracy of LSSVM model.
In this research, grid-search method, in which pairs of
(g, C, ε) are tried and the one with the maximum R
(correlation coefficient) or the minimum MRE (mean
relative error) is picked, was employed to optimize
control parameters.

4. Hybrid intelligent algorithms to
reduce NOx emission

4.1. Simulated Annealing Genetic Algo-
rithm

The simulated annealing (SA) algorithm, which can
find the global minimum of the objective function in
probability by random search, is a global optimization
method based on the mechanism of metal annealing
process. An improved method called the simulated
annealing genetic algorithm (SAGA), which combines
the simulated annealing and the conventional genetic
algorithm, is developed by Mathefound.

First, the initial status i which is characterized by
fitness of an initial individual is defined as the cur-
rent status, the energy of which is E i . Second, the
initial individual is imposed with a tiny change on its
fitness based on the crossover and mutation of CGA
and reaches a new status j, the energy of which is E j .
If E i < Ej , the new status j is considered as the sig-
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nificant status. If E i > Ej , the property of status
j has to be justified by the probability that individual
in this status considering the influence of thermal mo-
tion. The ration of probability for status i to j equals
to the ration of Boltzmann factor, as expressed as:

p = exp(
Ei − Ej
kT

)

where k is the Boltzmann constant. T is the thermal
equilibrium temperature.

Figure 2: Procedure of SAGA

After that, a random number ξ between 0 and 1 is
generated and compared with p. The status j will
be accepted as the significant status. Otherwise it
will be rejected. The current status is replaced by the
significant status. This process is repeated within a
given number of generations and at last the system
will reach a balanced status with a lower energy. Then
the thermal equilibrium temperature T is decreased to
a new one according to the following equation:

Tnew = Tcurrent × r 0 < r < 1

where r is the attenuation coefficient of thermal equi-
librium temperature.

When T tends to be 0, the optimal result is obtained.
The SA algorithm, which overcomes the essential de-
ficiency of CGA, enhances the ability of the searching
process to get rid of the local optimal solution.

The SAGA implements the genetic crossover and mu-
tation of Conventional Genetic Algorithm by temper-
ature controlling of Simulated Annealing Algorithm.
By combining the advantages of CGA and SA, a more
reasonable solution is expected. The procedure of
SAGA method is shown in Fig.2.

4.2. PSO- Genetic Algorithm

The particle swarm optimization (PSO), which has
the ability of fast convergence, is an evolutionary com-
putation technique developed by Kennedy and Eber-
hart based on the population behavior. PSO is initial-
ized with a population of random candidate solutions.
Each particle in the population is a point in an N
-dimension space (N is the dimension of the space,
which equals the number of control variables), which
is a potential solution to the optimization problem.
Every single particle is assigned a randomized velocity
and is iteratively moved through the problem space.
The quality of each particle is evaluated by the fit-
ness value which is calculated by a given function.
The PSO algorithm has the feature of rapid conver-
gence which can improve the searching efficiency if
combined with GA. The PSO-GA is a hybrid algo-
rithm which has a better performance on converging
speed and the ability of global searching. Let x and
v denote a particle position (solution) and its corre-
sponding travelling velocity in a search space, respec-
tively. Pbest represents the best previous position of
one particle, while the best position of the whole pop-
ulation is denoted as gbest .

In each iteration, particles firstly modify their veloc-
ities and positions according to Pbest and gbest as
shown in the following formulations:

vt+1 = ωvt + c1r1(t)(Pbest − xt)
+c2r2(t)(gbest − xt)
xt+1 = xt + vt+1

w(t) =


wmax − wmin

q
(t− 1) + wmin, iter ≤ 0

wmin, iter > 0

where v i represents the current velocity of the particle
at the i-th iteration while x i is the current position of
the particle at iteration i.

Next, the crossover and mutation progress will be
implemented on the particles according to the thought
of CGA as the following equations (12) and (13).

xi1 = xi1(1− b) + xi2b
xi2 = xi2(1− b) + xi1b

where b is a random number between 0 and 1.
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ai =


ai + (ai − amax) · f(g), r ≥ 0.5

ai + (amin − ai) · f(g), r < 0.5

f(g) = r2(1− g/Gmax)2

where ai represents the ith variable
of x while amax and amin are the upper and
lower bound of ai respectively. r2 is a random
number and the current number of iterations is
denoted as g. The random number between 0 and
1 is represented by r while the largest number of
evolution is described by Gmax .

When the PSO-GA was employed to solve the opti-
mization problem in this paper, the specific procedures
were as follows:

Step 1: Initialize population in a random fashion.

Step 2: Measuring the fitness of individuals in popu-
lation. The fitness is defined as the reciprocal of the
concentration of NOx which is calculated with the
LSSVM model developed above.

Step 3: Particles modify their velocities and positions
according to Pbest and gbest.

Step 4: The crossover and mutation is implemented
on population.

Step 5: Update the generation t=t+1, return to Step
2.

4.3. Tabu Search Genetic Algorithm

The tabu search (TS) algorithm, introduced by
Glover [32] , is a classical meta-heuristic which
searches optimal solutions in the adjacent domains of
candidate solutions created randomly to solve combi-
natorial optimization problems. The TS can be seen
as a hill-climbing algorithm that tries to prevent lo-
cal optimality by allowing non-improving moves. The
process of the TS can be briefly described as fol-
lows [33]. First TS algorithm starts with a group of
random initial solutions and iteratively improves the
quality of the solution by searching all the candidates
in the adjacent domains of that solution. These pos-
sible solutions in adjacent domains can be created as
the values which have a distance in a certain range
with the current solution. Using tabu list, the neigh-
boring solutions are evaluated based on the objective
function and selected even they don’t have an ideal
performance in the current stage. The best candidate
solution so far is put on the tabu list, so that it can-
not be operated for some number of iterations in order
to avoid repeating searching. Through designing the
size of the tabu list, the number of iterations that a

candidate solution is set tabu can be controlled. The
large enough size of the list is required in order to
avoid circulation and guaranteeing the searching in-
tensity. What’s more, an aspiration criterion must be
set to cope with the special situation. If the algorithm
finds that a solution which is still in the tabu list cre-
ates an objective value much better than the current
best-known solution, then this solution is allowed to
be operated. When the searching progress reaches a
preset stopping criterion, the algorithm stops and the
final solution is obtained from the best candidate so-
lution in the list. Since GA shows its weaker ability
of hill-climbing, an elevated genetic algorithm which
compounds the TS algorithm is proposed.

Figure 3: Procedure of TSGA

The procedure of TSGA method is shown in Fig.3.
After the initial population is generated, the TS
searching process is executed firstly in order to op-
timize the initial solution. Since all target variables
are coded in terms of real number in this paper, the
domain of candidate solutions is created as the fol-
lowing equation:

S(x) = {s|s = x+ ud s, x ∈ X}
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where s and x represent the new and original individ-
ual respectively. X is the discrete space of variables
while d represents the fixed distance of the displace-
ment. The u is used to control both the direction and
level of the movement which can be certain or random
number or a function decline with iterative times. In
this paper, the exponential function which decreases
with the iteration k i increases is used as u:

u = exp(
ki − kmax

R
)

where kmax represents the max iterations while R is
a coefficient which controls the descent rate of search
range. The superiority on the optimization efficiency
of this type of u will be discussed in the following
research.

The crossover and mutation will follow the TS algo-
rithm and the whole progress will continuously cycle
until certain condiction is satisfied.

5. Results and discussion

5.1. Modeling of NOx emission

As pointed out in section 3.2, παραμετερς (γ, ῝,
ε) have a significant influence on the predictive per-
formance of the LSSVM model. The selection of
(g, ῝, ε) must be completed prior to obtaining a de-
sired LSSVM model. The grid-search employed in the
present study was implemented on a desktop com-
puter with a 2.33 GHz CPU and 8.0 G DRAMs un-
der Windows 7. It took nearly 1 min of CPU time to
get the best (g, C, ε) with an MRE of 1.59%. The
optimal pairs of (g, C, ε) were (2373.7, 3.262, 0.167).

Figure 4: Measured and predicted NOx concentra-
tions by LSSVM

With the optimized parameters, the LSSVM model
of NOx emission was trained using the 100 train-
ing cases. After that the performance of the trained
LSSVM model was evaluated by the remained 100
cases as the testing subset employed. Training a
LSSVM model from the data set consisting of 100
samples may typically take several seconds. The com-
parison between the predicted and the measured NOx
concentration is shown in Figure 4. The solid line
represents the measured NOx concentrations, while
open circles represent the predicted NOx concentra-
tions from the LSSVM model.

Figure 5: Relative errors producted by SVR, LSSVM
and ELM

The ELM and SVR model, which were widely
used models to predict NOx emissions, were com-
pared with LSSVM in order to verify the superi-
ority of the LSSVM model. The ELM model was
optimized using the conventionally employed “trial-
and-error” method in which control parameters were
carefully tuned. The ELM model which has a sin-
gle hidden layer with 12 neurons was chosen. The
learning rates of the whole net and layers were both
set as 0.2. The TRAINGD method was selected as
the training method for the layers. The tansig and
purelin function were chosen as the transfer function
of the hidden layer and output layer respectively. The
SVR model was built by the LIBSVM software pack-
age. The RBF was also used as the kernel function
while the parameters (C, γ) were optimized by 10-
fold cross validation. The final parameters used were
(5990, 10).

The capabilities of LSSVM, SVR and ELM model
could be revealed through direct comparison between
their optimized models. Figure 5 compares the mod-
eling error of the LSSVM, SVR and ELM models case
by case. The maximum modeling error of the LSSVM
model was 2.729%, presented by the 33th case in the
testing subset. All the 100 testing cases had mod-
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Figure 6: Original NOx concentration and the op-
timized results based on CGA, TSGA, PSOGA and
SAGA

eling error less than 5%. The mean modeling error
and the correlation factor were 0.0731% and 0.999,
respectively. As a whole, the predicted values showed
a rather good agreement with the measured values.
The maximum modeling errors of the SVM and ELM
models were 17.768% and 14.358%, respectively both
presented by the 43th case. Using SVR, a total of
91% (91 cases) of testing cases had modeling error
less than 5%. The mean modeling error and the cor-
relation factor were 0.560% and 0.995, respectively.
However, the percentage of testing cases had model-
ing error less than 5% reached 88% (88 cases) when
the ELM model was used. The mean modeling er-
ror and the correlation factor were also increasing to
0.876 % and 0.881, respectively. The modeling error
of 100 cases in the LSSVM was smaller than that both
in the SVR model and ELM model. And the corre-
lation coefficient generated by LSSVM is the highest
among the three models. It is hence concluded that
the LSSVM is the optimal modeling method to build
the accurate predictive model of NOx emission from
a 30MW.

5.2. NOx reduction by GA, SAGA, PSO-
GA and TSGA

The control parameters of all the algorithms have sig-
nificant influence on the performance of optimization
procedure. The “trial-and-error” procedures were em-
ployed for all the four algorithms presented to obtain
the suitable control parameters. Part of the control
parameters for the three optimization algorithms are
listed in Table 1. The population sizes for the four
algorithms were all set to 50 to make a fair compari-
son. And real number encoding is used as the coding
method for all the four algorithms.

It is interesting to compare the performance of the
four optimization algorithms mentioned about. Be-
cause the 94-th case of a total of 200 cases has the
maximum NOx concentration of 45.541 ppm, the four
optimization algorithms are conducted on this case.
All the algorithms were set with a population of 50
individuals and 100 generations. Figure 6 shows the
statistical treatment of the original concentration of
NOx and the optimized results based on CGA, SAGA,
PSOGA and TSGA. Optimize process of each algo-
rithm was implemented for 50 times and the aver-
age value, minimum value and value of the optimized
results were calculated and studied due to the ran-
domness of the optimization process of the four algo-
rithms. The standard deviations of 50 results created
by the four algorithms were represented by the error
bars. As shown in Fig.6, the optimized results for
NOx concentration of all the four optimization algo-
rithms become much lower than the original concen-
tration of NOx. This confirms that all the four algo-
rithms have the different degrees of ability to reduce
the NOx emission for the 30MW gas burner. How-

Algorithms Control parameters
CGA Coding length:12;

crossover probability:0.7;
mutation probability:0.7;
recombine probability:0.7

SAGA Coding length:12;
crossover probability:0.7;
mutation probability:0.7;
number of generations

per temperature phase:100;
Initial temperature:100K;

end temperature:0K;
descending coefficient:0.8.

PSOGA Coding length:12;
crossover probability:0.7;
mutation probability: 0.3

TSGA Coding length:12;
crossover probability:0.7;
mutation probability:0.7;

number of iterations
per generation:20;

length of taboo list:13.

Table 1: Control parameters of four optimization al-
gorithms

ever, the strength of the ability to reduce the NOx
emission of the four optimization algorithms must be
evaluated and compared in order to make the best
choice. There are mainly three indicators to describe
the optimization capability including the rate of con-
vergence, global searching ability and the stability of
searching. The results shown in Fig.6 indicate that
the CGA obtained the worst solution among the four
algorithms. The average value of optimized NOx con-
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centration found by the CGA is 23.75 ppm which is
the highest one and the standard deviation of CGA re-
sults which is only less than that of PSOGA is 2.132
ppm, showing that the CGA is the worst in global
searching ability and the stability of searching. This
conclusion which corresponds well to other research
means CGA is very easy to fall into the locally opti-
mal solution and there is also a huge difficulty in CGA
to provide stable solutions than other algorithms for
the optimization problem in this paper. In contrast,
TSGA obtained both the lowest average value and the
standard deviation of optimized NOx concentrations,
which are 19.607 ppm and 0.418 ppm respectively,
among the four algorithms. Therefore, according to
the evaluation criteria above within a given iterations,
the TSGA is the most effective algorithms because it
provides the highest quality and more stable solutions
for the optimization problem in this paper. In the
94-th case, the TSGA successfully reduced 38.39% of
the NOx concentration. At the meantime, the second
lowest values of average concentration and standard
deviation of NOx concentration which are 20.885 ppm
and 0.860 ppm respectively were obtained by SAGA
while PSOGA got the third lowest value of average
concentration which is 131.25 ppm and the highest
standard deviation of 2.624 ppm respectively. The
PSOGA increases the unsteadiness of the searching
progress on the contrary.

Figure 7: Convergence curves of four algorithms

The rate of convergence can be observed by com-
paring the convergence curves based on the four al-
gorithms, which is shown in Fig. 7. The searching
process can also reflect the global searching ability of
the four algorithms. Each convergence curve shown
in Fig.7 is the mean curve of 50 curves obtained by
50 times repeated trials for every algorithm. The red
curve reveals that the CGA has the lowest rate of
convergence and falls into a local optimum after the
50-th generation. This is because the rigorous selec-

tion criteria of CGA decreases the diversity of pop-
ulation significantly and finally leads to low conver-
gence speed and premature of searching process. The
searching process of CGA is easy to stick in one of the
local optima due to the limitation of the worse indi-
viduals. And the tardiness of crossover and variation
slows down the convergence rate. In contrast, the
other three searching process are significantly differ-
ent from that of CGA. The PSOGA has the fastest
convergence speed before the 20-th generation be-
cause of the high-efficiency way of particles update.
However, it still falls into a local optimum after the
20-th iteration caused by the selection mechanism of
GA. The optimization procedure of SAGA has a better
performance than that of PSOGA. The final optimal
solution of SAGA is lower although the convergence
rate is slower than that of PSOGA. This is because the
looser selection criteria controlled by the high thermal
equilibrium temperature during the early iteration of
SAGA process avoids eliminating the worse individuals
too quickly. In this way, the genetic diversity of pop-
ulation is maintained so the premature of searching
process is prevented. However, it seems that the hill
climbing ability of SAGA is not strong enough to get
the final optimal value. The reason is the thermal
equilibrium temperature decreases and tends to be
zero during the last stage, so the SAGA weakens the
characteristic of Simulated Annealing Algorithm and
becomes similar to the CGA. Therefore, the weakness
of CGA which search the final optimal solution only
by crossover and variation is still occurred so it needs
much more time to converge to the best value. The
convergence curve of TSGA displays the best search-
ing performance among the four algorithms as the
faster convergence rate than that of SAGA and the
lowest value of NOx concentration obtained. This is
because TSGA introduces the tabu searching tech-
nique which searches the adjacent domains of every
individual in order to maintain the genetic diversity of
population at every step of iteration. What’s more,
the searching range of adjacent domains is controlled
according to the iterations. During the early stage,
the wide adjacent domains are searched in order to
cover the candidate solutions as many as possible.
And the adjacent domains become so narrow which
improves the climbing ability of crossover and varia-
tion to converge to the best solution more quickly at
the last stage.

Consequently, all the hybrid algorithms in differ-
ent extent improve the deficiency of the CGA which
causes higher probability to fail when CGA is employed
to find the extreme value of the optimization problem.
Considering the three evaluation criteria above com-
prehensively, TSGA seems to be a best choice because
its best global searching ability and stability of search-
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ing in the four algorithms and the convergence rate
only slower than that of PSOGA. In the future, the in-
fluence of different functions which control the range
of neighborhood on the performance of TSGA should
be further researched.

6. Conclusions

In the current study, a complex and nonlinear model
of NOx concentration from a 30MW gas burner was
built by LSSVM model which was optimized by grid-
search to predict the concentration of NOx. And
the superiority of LSSVM model was verified through
comparing the predicted results of the widely used
ELM model and SVR, respectively. The results show
that the MRE and correlation coefficient of the pro-
posed LSSVM model are 0.0731% and 0.999, which
are much better than those of the ELM model and
SVR. Using the LSSVM model as the objective func-
tion, the CGA and three other GA-based hybrid algo-
rithm including the SAGA, PSOGA and SAGA were
employed to optimize the operating parameters for
the gas burner to reduce the concentration of NOx.
Their optimization capabilities were evaluated and
compared. There comes a conclusion that all the
four optimization algorithms can optimize the oper-
ating parameters and finally reduce the concentration
of NOx for the 30MW gas burner. All the hybrid algo-
rithms in different extent improve the deficiency of the
CGA which has insurmountable disadvantages to fail
in finding the globally optimal solution. The TSGA
is preferable because its best global searching ability
and stability of searching in the four algorithms and
the convergence rate only slower than that of PSOGA.
This is because TSGA introduces the tabu searching
technique and controls the searching range of adjacent
domains using a function. In summary, the LSSVM
plus TSGA method is the best combination among all
the methods involved in this paper when employed to
predict and reduce NOx emission by optimizing the
operating parameters for the gas burner on-line.
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