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Abstract

The ability to accurately detect power system faults is of vital importance for the purpose of isolating malfunctioning equipment
and resuming normal operation as soon as possible after a fault occurs. People have used a variety of electric parameters
as metrics to identify faults for a long time. The method proposed by this paper departs from the traditional approach by
introducing Fisher information (FI) as a measure of the stability of electric signals and as a criterion for making fault decisions.
In this way, a non-dimensional positive parameter is used as a single criterion to deliver fault detection for power distribu-
tion networks. Firstly, we simplified the formula of FI and then adopted a practical method for calculating values of FI. We
demonstrated the application of FI to measure the stability of electric signals. Finally, we combined FI with wavelet analysis
to propose a novel technique for phase selection of a power distribution network with a grounding short-circuit fault, namely
the wavelet-based Fisher information (WFI). Simulation studies were then carried out to show the feasibility of the proposed
method.
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1. Introduction

Security and stability have always been hot topics in power
systems. Great efforts have been made over a long period
of time to improve the operational reliability of power sys-
tems, triggering numerous research campaigns. However,
traditional methods are now failing to achieve the desired re-
sults when used to improve the operational stability of the
power system, as power distribution networks have greatly
expanded and new-type electrical equipment have been in-
stalled. The precondition for boosting the level of stable oper-
ation of the power system is real-time monitoring and predic-
tion [1, 2]. Thus, swift fault detection and accurate fault clas-
sification are very important elements when clearing faults
and ensuring the safe and stable operation of a power distri-
bution network.

Rapid advances in computer and automation technologies
have opened the way for wide-ranging applications of intel-
ligent devices such as electrical SCADA and Phase Mea-
surement Units, Fault Information Systems and Transient
Recorders. That has made it possible to obtain large quan-
tities of a broad spectrum of measurement data in real time.
This abundant real-time measurement data contains rich in-
formation that demonstrates the complexity and uncertainty
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of the system, including fault information. This faithfully re-
flects real conditions of the system. By analyzing and syn-
thesizing these conditions, we can then conclude whether
the system is stable or secure at that time [3]. Thus the key
is to find an appropriate criterion by which this vast array of
measurement data can be fed into the decision-making pro-
cess.

Fisher information is well known for its ability to measure
the amount of information from measurements subject to un-
certainties. The reason is that essentially any type of data or
model can be converted into information regardless of dis-
ciplinary origin [4]. Unlike other measures of system infor-
mation, Fisher information provides a method of monitoring
system variables. Using this method, we can then moni-
tor system states and state shifts [5]. The ability to detect
states and state shifts permits the identification of fundamen-
tal changes occurring in the system and provides insight into
what can be done to abate negative consequences [6]. In
practice, Fisher information has been applied to derive fun-
damental equations of physics, thermodynamics and popu-
lation genetics [7, 8]. More recently, ecologists have made
far-reaching applications of Fisher information theory in eco-
logical matters. Fath, Mayer et al. used it as a measure of
dynamic order in complex systems [5, 9]. Mayer, Karunanithi
et al. proposed it as a quantitative index for the detection and
assessment of ecosystem regime shifts [9, 10] and as a sus-
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tainability metric [4]. Moreover, Fisher information has been
used to study model systems including the stability of a mul-
tiple compartment food web [11, 12, 13] and to optimize con-
trol of dynamic model systems for sustainable environmental
management [14, 15]. Rico-Ramirez et al. used Fisher infor-
mation to assess dynamic models for therapeutic optimiza-
tion in cancer immunotherapy and the continuous isothermal
crystallization of ammonium sulfate [16]. The above reviews
in rough terms the successful application of Fisher informa-
tion theory in ecological areas. Inspired by this, this paper
attempts to use it to detect faults in power systems.

One intrinsic property of Fisher information is that it is
particularly suitable for detecting fundamental changes in
a system, which makes it ideal for fault detection in sys-
tems such as distribution networks. Here, a first attempt is
made to use it to address the problem of phase selection
when a grounding short-circuit fault occurs in a distribution
network. We also note that wavelet analysis is quite a use-
ful technique for characterizing the local behavior of a signal
subject to noise, in either time domain or frequency domain.
Inspired by their respective merits, we propose a novel tech-
nique for phase selection of a power distribution network with
a grounding short-circuit fault, namely wavelet-based Fisher
information (WFI), which is designed to enhance the capabil-
ities of Fisher information in terms of dealing with noise and
uncertainties by exploring the power of wavelets.

The paper is organized as follows. Fisher information
is introduced in Section II. Section III presents a practical
method for computing wavelet-based Fisher information and
then proposes a method for phase selection based on WFI.
Simulation results are included in Section IV. Finally, we dis-
cuss the results in Section V.

2. Fisher information

Information theory provides a quantitative framework by
which to describe processes that admit only partial knowl-
edge [9]. In 1948 Shannon introduced the notion of entropy
(also called Shannon entropy) as a measure of the amount
of information in a signal source, which enriched its origi-
nal meaning [3] and this is the origin of information entropy.
In common with Shannon entropy, information entropy is
a measure of the level of system uncertainties. For a sig-
nal source, the greater its information outputs, the greater
its randomness and uncertainty. That is to say, its stabil-
ity is very poor and accordingly its entropy value is very
big. Information entropy, therefore, is regarded as a mea-
sure of the level of system disorder [17]. On the basis of
information entropy, a number of variants of Shannon en-
tropy have been introduced in the literature, for example, ap-
proximate entropy [18], which has been used to study the
complexity of biological time series [19, 20], fault diagnosis
of mechanical systems [19, 20, 21, 22] and electrical trans-
mission systems [23], and wavelet entropy [24], which has
found applications in fault detection in electrical distribution
systems [25, 26] and electric power transient signal analysis
as well [27, 28]

The statistician Ronald Fisher (Fisher 1922) developed
a measure of indeterminacy, now called Fisher information.
Fisher information can be interpreted as a measure of the
ability to estimate a parameter, as the amount of information
that can be extracted from a set of measurements, and also
as a measure of the state of order or organization of a sys-
tem or phenomenon [7]. Fisher information (FI) for a single
measurement of one variable is calculated as follows:

FI =

∫
ds

P(s)
(
dP(s)

ds
)2 (1)

where P(s) is the probability density function (PDF), s is
a state variable.

Power system stability is conceptually associated with re-
peatability of observations. Hence, for a power system that
is perfectly stable, repeated observations of the variables
over time yield the same values within the limits of mea-
surement uncertainty. Thus, for perfect stability, the proba-
bility density function (p(s)) becomes a very sharp spike with
derivative dp/ds that is approaching infinity and Fisher in-
formation (see Eq. 1) approaching infinity. This means that
repeated measurements give increasingly more information
eventually approaching infinite information. For a power sys-
tem that is perfectly unstable, the opposite is true. Here all
observations yield completely different and uncorrelated val-
ues for the variables, the likelihood of observing one value
is the same as any other value, the probability density func-
tion (p(s)) is flat, the derivative dp/ds is approaching zero
and the Fisher information is near zero. Nevertheless real
power systems exist between these two extremes of perfect
stability and perfect instability and between infinite and zero
Fisher information. Hence, Fisher information is a theoret-
ically sound measure of power system stability. In practi-
cal application, in order to minimize calculation errors arising
from dividing by small values of p(s), we replace the proba-
bility density function in Eq. (1) with its amplitude, which is
defined by q2(s) ≡ p(s). Eq. (1) then becomes:

FI = 4
∫

ds
[
dq(s)

ds

]2

(2)

Note that in specific calculation, we do not know the concrete
form of the continuous function q(s), but use instead a finite
number of samples qi. Thus Fisher information FI is usually
computed numerically. For that purpose, we shall replace
the derivative by the numerical difference (qi+1−qi), and cor-
respondingly use the sum of finitely many terms (qi+1 − qi)2

to approximate the integral, which then leads to the following
formula for calculating Fisher information approximately:

I ≈ 4
∑[

qi − qi+1
]2 (3)

The expression in Eq. 3 will henceforth be used in all our
Fisher information calculations.

3. Method

Signals occurring in an electrical distribution system are
usually a combination of signals with various frequencies. In
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normal operating conditions, the Fisher information of sig-
nals is not subject to significant changes. However, when
a fault appears, the electrical distribution system will be run-
ning with a fault, and its currents and voltages will exhibit
changes with characteristics which will be captured by the
Fisher information. However, if we use the Fisher informa-
tion directly for the analysis of faulty signals, it does not fully
utilize the potential of Fisher information, since Fisher infor-
mation is based on the derivative of the PDF, and thus it is
more sensitive to local changes. It is well known that the
technique of wavelet analysis is capable of capturing local
changes in the frequency domain and time domain. If we
process faulty signals using wavelet transform first, we obtain
a set of coefficients which are sparse, meaning only a small
portion of those coefficients will be significantly larger than
zero, whereas the rest will be nearly zero. That is because
most of the energy is contribute by a small portion of coef-
ficients. This sparsity implies the distribution of the coeffi-
cients is much sharper in the middle than a Gaussian distri-
bution, and has a clear tail towards the two ends [29]. These
properties happen to be in good accordance with those of
Fisher information based on the derivative of PDF. That in-
spires us to combine wavelet analysis with Fisher informa-
tion; we thus propose wavelet Fisher information (WFI) for
fault phase selection for electrical distribution networks.

Let the signal of concern x(n) be a time series. The
wavelet decomposition of x(n) is as follows: the high-
frequency coefficient and low-frequency coefficient at the kth

sample of the jth decomposition are cD j(k) and cA j(k) re-
spectively; D j(k) and A j(k) are the components after recon-
struction, and the frequency bands covered by D j(k) and
A j(k) are

cD j(k) :
[
2− j fs, 2−( j−1) fs

]
(4)

cA j(k) :
[
0, 2− j fs

]
j = 1, 2, ..., J (5)

where fs is the sampling frequency and J is the maximum
scale used in the wavelet decomposition. Then the original
signal x(n) can be expressed as the sum of all components,
i.e.,

x(n) = D1(n) + A1(n)
= D1(n) + D2(n) + A2(n)

= ... =

J∑
j=1

D j(n) + AJ(n)
(6)

Finally let D j+1 = A j and we have

x(n) =

j+1∑
j=1

D j(n) (7)

In the following we shall present the method for calculating
Fisher information based on the above wavelet decomposi-
tion of the original signal x(n). Suppose at the jth scale, the

reconstructed component is D j = {d(1), ..., d(N)}. We then
introduce a series of sliding windows Wm on D j, as follows

Wm = {d(k), ..., d(k + w − 1)} (8)

where k = 1 + m · δ,w ∈ N is the window width, δ ∈ N the
sliding factor, and m = 1, ...,M with M = (N − w)/δ being the
number of windows. Suppose all the elements in a sliding
window Wm can be put into L bins. Then we have

Length(Wm) =

L∑
l=1

Length(Zl) (9)

where Length(.) stands for the total number of data points
contained in a window or bin of concern, and

Zl = {Zl : |Z1(i) − Zl( j)| ≤ 3 ∗ σ; i, j ≤ 1, 2, ...,w; i , j} (10)

Namely, the total number of elements in a sliding window
equals the sum of the subtotals contained in those bins. Note
that here σ is the standard deviation of the component D j

for normal phases. According to Chebyshev’s theorem, the
above binning process guarantees that 89 of the data points
in this window fall into the same bin, irrespective of the prob-
ability distribution. We summarize the procedures involved in
the binning method: (i) categorize a time series (i.e., the dis-
crete wavelet component) into a sequence of time windows,
(ii) in each window convert data points into states by using
the above method, (iii) in each window construct a probability
distribution function for possible states of the system, and (iv)
compute the Fisher information from the PDFs constructed
in (iii).

4. Results

4.1. Measurement of stability for ideal electric signals

We constructed the following four ideal electric signals:
S 1 = sin(2π f1t)
S 2 = 0.5sin(2π f1t) + 0.5sin(2π f2t)
S 3 = 0.25sin(2π f1t) + 0.25sin(2π f2t) + 0.25sin(2π f3t) + 0.25sin(2π f4t)
S 4 = sin(2π f1t) + N.

Where f1 = 50 Hz, f2 = 150 Hz, f3 = 250 Hz, f4 = 350 Hz;
N is a zero mean white noise source.

From the above four signals, real-time data are collected
for 2000 points with a 0.05 second interval and a sampling
rate of 20 kHz, respectively. Note that here we only use
Fisher information (namely Eq. 3) to measure the level of
stability of all four signals and do not involve any wavelet
transforms.

Fig. 1 shows their corresponding waveforms. Finally, we
used the proposed binning method to calculate the values of
Fisher information for every signal; they are shown in Table 1
below.

As shown in Table 1, S 4 has the most smallest FI value of
the four signals. That is because S 4 contains a white noise
source, which makes it more unstable, whereas the other
three signals have the same and the biggest FI values due
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Figure 1: Four ideal electric signals waveforms

Table 1: FI of four ideal electric signals

Signal S 1 S 2 S 3 S 4

FI 4 4 4 1.3069

to their stability and periodicity. The FI value is clearly closely
related to the stability of the signals. Namely, the greater the
instability of a signal is, the smaller its FI value is, which is as
expected.

We altered the amplitude of the above four signals to see
whether their FI values would be subject to such change.
Table 2 shows the test results.

We can see clearly that FI values in Table 2 are almost the
same as in Table 1. The only difference is that the FI value
calculated by signal S 4 is slightly different to the one calcu-
lated by signal 0.5 S 4. This is because the white noise signal
that S 4 and 0.5 S 4 contain is generated randomly, which will
have a marginal effect on the calculation of FI values. This
situation does not lead to any changes as regards the con-
clusion drawn from the testing, which is that the FI value of
a signal is unrelated to its amplitude.

Finally, we investigated another situation. Namely, we al-
tered the proportion of white noise a signal contains, i.e., the
noise-to-signal ratio (NSR), to see the effect on the FI of the
signal.

As shown in table 3, the FI of the signal increases as its
NSR falls gradually. When its NSR is reduced to a certain
degree, the FI of the signal is the same as for stable signals.
So the proposed method based on Fisher information has
a certain ability to restrain noise.

In summary, the FI based method is able to distinguish ex-
actly between stable signals and unstable ones when used to
analyze electric signals. Moreover, the result of the analysis

Table 2: FI of signals with different magnitude

Signal 0.1 S 1 5 S 2 10 S 3 0.5 S 4

FI 4 4 4 1.3326

Table 3: FI of signals with different SNR

Signal S 1 + 0.1N S 1 + 0.1N S 1 + 0.1N

FI 2.3135 3.9563 4

Figure 2: Voltage waveforms of single-phase grounding fault

presented by the method is unaffected by the amplitude of
the signals. In addition, it has a certain anti-noise capability.

4.2. Phase selection for power distribution networks with
grounding faults

PSCAD/EMTDC power system simulation software was
used to set up the simulation model of a 500 kV Dual-power
supply distribution network. The positive-sequence parame-
ters are

r1 = 0.0363 Ω/km, x1 = 0.286 Ω/km, b1 = 3.425 × 10−6

S/km, and the zero-sequence parameters are
r0 = 0.379 Ω/km, x0 = 1.021 Ω/km, b0 = 4.767 S/km, where

the length of the transmission line is 180 km.
Three scenarios were simulated, including single-phase

grounding fault, two-phase grounding fault and three-phase
grounding fault. Let us suppose that grounding faults occur
at t=0.05s. The analysis is focuses mainly on the voltages of
all three phases. Real-time data are collected for two cycles,
one before the fault onset and one afterwards, with a sam-
pling rate of 20 kHz. The collected data are then decom-
posed by using db5 wavelets. Finally, we calculated the val-
ues of the wavelet-based Fisher information of the voltages
for every phase, by applying the proposed binning method to
the coefficients D2(n).

Fig. 2 shows the waveforms of the voltages of all three
phases when an A-phase grounding fault occurs. As shown
in Fig. 2, all the voltages of the three phases are quite nor-
mal, and all of them exhibit sinusoidal waveform before the
fault onset, which is quite reasonable since the network has
a symmetric topology and no fault has occurred yet within
the network. However, all the voltages start to deviate from
initial values as soon as the fault happens (at t = 0.05 s),
which means the fault has changed the overall behavior of
the network. What is more interesting is the difference be-
tween the voltages of normal phases and that of the faulty
phase. In fact, following the fault, the voltage of faulty phase
A drops to zero instantly, then those of normal phases B and
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Figure 3: WFI of faulty phase A and normal phases

C go up, which is quite different. This observation is essen-
tial for phase selection, as it implies that there are funda-
mental differences between the voltages of normal phases
and that of the faulty phase. Despite all this, one should
not expect to base phase selection on a visual inspection
of those voltages, because real running conditions may be
much more complex than the ideal one. More importantly, we
need a more robust trigger signal to activate safety protection
devices to rapidly isolate faulty equipment after a fault hap-
pens. That is why we proposed this phase selection method
based on the WFI, as it can cope reasonably well with noise.

The WFI obtained based on wavelet decomposition is
shown in Fig. 3. Prior to the onset of the fault, the WFI of
the voltages of all three phases remained at the same level
(around 4), which is again expected since there is no fault in
the network. Then the WFI values of all three phases mark
a step change when the fault happens. However the level of
changes is different for those three phases—the faulty phase
has the most significant change of the three phases. That
is because when a single-phase grounding fault occurs, the
voltage of the faulty phase contains more information about
the fault than the other two normal phases, and thus the WFI
of the faulty phase should exhibit more deviation from the
fault-free WFI. Moreover, at the time of occurrence of the
step change of the two normal phases the WFI lags behind
that of the faulty one, which characterizes the causal relation-
ship between the faulty phase and the normal phases when
there is a single-phase grounding fault. Hence the results
in Fig. 3 show that the proposed method based on WFI can
identify the faulty phase well, in terms of amplitude and time.

Consider the second scenario, where a two-phase ground-
ing fault occurs at t = 0.05 s. The waveforms of the voltages
of all three phases are shown in Fig. 4. Comparing to Fig. 1,
although this is a different fault scenario, a similar pattern is
evident: there is a significant difference between the voltage
of normal phase C and those of the other two faulty phases.
The WFI values of the voltages in the above scenario are
shown in Fig. 5. It can be clearly seen that the conditions of
this fault scenario are quite different from those of the previ-

Figure 4: WFI of fault phase A and normal phases

Figure 5: WFI of fault phase A and normal phases

ous one, yet the distinct characteristics of the faulty phases
still stand out.

The third simulation investigates the case of a three-phase
grounding fault happening at t = 0.05 s. Note that in this
case, the waveforms of the voltages of all three phases are
almost identical after the fault occurs, as shown in Fig. 6,
since the parameters of those three phases are exactly the
same, and so this is completely understandable. The WFI
values are plotted in Fig. 7. As expected, the WFI values of
all three phases have nearly the same changes.

The simulated results above share a common character-
istic. Namely, the WFI of all three phases have an obvious
abrupt change when the fault happens, and the level of the
abrupt changes of the faulty phase WFI is much bigger than
that of the normal ones.

For every type of failure above, the WFI values of all three
phases at the bottom of the abrupt change are recorded in
Table 4. As shown in Table 4, the WFI values of the faulty
phases are significantly lower than for the normal phases at
the bottom. Consequently, we can identify faulty phases by
comparing the WFI values of all three phases at the bottom.
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Figure 6: Voltage waveforms of three-phase grounding fault

Figure 7: WFI of all three fault phases

5. Discussion

Fisher information, an important method in information
theory, was originally developed as a measure of the infor-
mation content in data. We introduced it into a power system
and then applied it to measure the stability of the electrical
signals and to detect faults in distribution networks.

As shown in Table 1 S 1 is a signal with a single frequency.
S 2 and S 3 are a combination of signals of various frequen-
cies. All of them are stable signals, so their WFI values have
the maximum value 4. However, S 4 contains noise, which
makes it more unstable. Thus its WFI value is only 1.3069.

Table 4: WFI values of all three phases at the bottom for every type of failure

Faulty type phases WFI

A phase fault
A 0.4389
B 2.851
C 2.456

A and B phases fault
A 0.4389
B 0.7573
C 2.456

AB and C phases fault
A 0.4389
B 0.7573
C 1.082

The question is whether the stability of the signals measured
by the proposed method is subject to their amplitudes. This
can be answered by reference to Table 2. The table shows
that the stability of the signals measured by the method is
independent of their amplitudes, which means this proposed
method is especially suitable to detect small signals. Table 3
shows that the WFI values of the signals increases gradu-
ally as their uncertainties reduce. The reverse is also true.
Moreover, for those signals containing a little noise, their WFI
values stay roughly the same, which means the method can
cope with noise.

Fig. 3 shows the WFI value of faulty phase A undergoes
a series of changes when a single-phase grounding fault oc-
curs. Namely, the value suddenly drops to 0.4389 the mo-
ment the fault happens (t = 0.05 s) from 4, which is the
WFI value when the network has no fault, and then rapidly
jumps up to 4 once again, as noted in the first row in Table 4.
Physically, this process characterizes the whole course of
the occurrence of the faults. We can also see from Fig. 3
that normal phases B and C experience the same process
as well, yet the intensity of the changes of their WFI values
is much lower than for the faulty one. It is worth noting that
the abrupt changes seen in the WFI of normal phases B and
C are slightly different. That is because that at the time the
fault occurs, the fault characteristics associated with these
two normal phases is not exactly identical. However, that
does not affect the ultimate outcome of phase selection. In-
terestingly, there is a time delay between the abrupt changes
in faulty phase WFI and those of normal phases WFI, which
reflects the relationship between the causes and the conse-
quences when the fault appears.

Fig. 5 demonstrates the evolution of the WFI values of all
three phases when a two-phase grounding fault occurs. See
also from the second row in table IV, the WFI values of two
fault phases drop to the minimum values 0.4389 and 0.7573
respectively at the time the fault happens (t = 0.05 s). It
is worth noting that these values differ slightly. That is be-
cause at the time the fault occurs, the fault characteristics
associated with these two faulty phases is not exactly identi-
cal. Normal phase C has a similar process compared to the
above faulty phases, but its WFI value is 2.456 at the bottom,
which is much bigger than that of the faulty phases. More-
over, there is also a time delay between the abrupt changes
of the two faulty phases WFI and that of the normal phase
WFI. When a three-phase grounding fault happens, the WFI
values of voltages of all three phases show nearly the same
pattern, provided the three phases have the same param-
eters. This case is shown by Fig. 7. The WFI values of
three faulty phases drop to the minimum values of 0.4389,
0.7573 and 1.082 respectively at the time the fault happens
(t = 0.05 s); see in particular the third row in table IV. The
difference among them is not very big, which enables us to
conclude that it is a three-phase grounding fault.
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6. Conclusion

This paper first introduces Fisher information as a mea-
sure of the stability of electric signals then we combine it
with wavelet analysis to tackle phase selection in a power
distribution network with a grounding short-circuit fault.

Simulation results have shown that this method can dif-
ferentiate with exactitude the level of stability of varieties of
the signals, and the obtained result is unaffected by the am-
plitude of the signals. What’s more, it has a certain anti-
noise capability. Fisher information based on wavelet anal-
ysis can quantitatively distinguish faulty phases from non-
faulty ones, under varied conditions such as single-phase
grounding fault, two-phase grounding fault and three-phase
grounding fault. The method can also identify when a fault
occurs.
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