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Abstract

This paper presents a way of predicting NOx emissions from circulating fluidized bed combustors (CFBC) in air-fired and oxy-
fuel conditions, using the Artificial Neural Network (ANN) Approach. The Original Neural Networks Model was successfully
applied to calculate the NOx (i.e. NO + NO2) emissions from coal combustion under air-fired and oxygen-enriched conditions
in several CFB boilers. The ANN model was shown to give quick and accurate results in response to the input pattern. The
NOx emissions, evaluated using the developed ANN model are in good agreement with the experimental results.
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1. Introduction

Nitrogen oxides (NOx) are major gaseous pollutants CFB
fossil fuel combustion, having injurious effects on the envi-
ronment and human health [1]. The concentration of NOx

in flue gas is the result of competing formation and destruc-
tion mechanisms and is affected by complex factors. Among
them are: fuel properties (particle size distribution, nitrogen
and volatile content), excess oxygen, primary/secondary gas
ratio, local temperature and oxygen partial pressure in the
furnace, the presence of calcined limestone in the combus-
tion chamber, gas velocity in the furnace, and the geome-
try of the system, as boiler size and exit effects influence
the mixing processes and distribution of solids in the com-
bustion chamber [2–31]. The height of the pilot-scale facil-
ities used is smaller than the height of large-scale combus-
tors, leading to a lowering of the gas residence time. Ra-
dial mixing of the fuel and of the secondary gas in the test
facilities is more enhanced than it is in large-scale combus-
tors [18]. For the oxy-fuel conditions the flue gas-recycle ratio
should also be taken into account, considering the NOx for-
mation and destruction mechanisms, as part of the flue gas
is recycled to the combustion chamber to control the com-
bustion temperature [19, 21]. To obtain NOx concentrations
in flue gas, detailed measurements are generally needed,
which are usually time consuming and expensive [2–4, 6–
22, 26–35]. Other ways to evaluate the gaseous pollutants
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emissions involve the use of several CFBC models. They
differ as to their details and/or sophistication [5, 12, 25, 36–
55]. Some of them refer to oxy-fuel conditions. Basu pro-
vided a wide-range review and comparison of circulating flu-
idized bed combustor models [5]. The author discussed two
programming approaches to performance modeling, i.e., the
furnace approach and the system approach. The furnace
approach describes the details of what goes on in the fur-
nace while the system approach focuses on system inte-
gration. In the furnace approach, models can be grouped
under three levels of details and/or sophistication: level I:
1-D, plug flow/stirred tank, using simple mass and energy
balance; level II: core-annulus, 1.5-D with broad considera-
tion of combustion and other related processes; level III: 3-D
model based on Navier-Stokes Equation with detailed con-
sideration of chemical kinetics and individual physical pro-
cesses. Gungor and Eskin [12] also underlined that all CFB
models can be classified into three groups, according to the
Harris and Davidson classification [36]. Models of Type I con-
stitute the simple axial solids distribution models, Type II are
core/annulus models and Type III—Computational Fluid Dy-
namics (CFD) models, which are the most general and nu-
merically complex. The CFD models employ gas and solids
continuity equations, momentum balances and constitutive
equations [12]. As an example, Leckner and Lyngfelt [21] de-
veloped a two-dimensional coal combustion model in a CFB
boiler. It was successfully validated against data from
a pilot-scale 50 kW CFB combustor as well as an industrial
scale 160 MW CFB boiler. A review of macroscopic (semi-
empirical) models for fluid dynamics of circulating fluidized
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bed boilers was also given by Pallares and Johnsson [55].
As the nature of the industrial processes is often non-linear
and extremely complex, models usually include some empiri-
cal parameters to provide necessary data in the cases where
up-to-date modeling is unsatisfactory [55]. It happens, e.g.,
to adjust parameters of the model, which could not be deter-
mined immediately, especially for different operating condi-
tions. Models are often time consuming. The time required to
acquire accurate predictions through numerical testing can
be fairly long, in spite of the fact that they usually use sim-
plified assumptions to make the models simpler and easier
and to obtain a tractable solution. The algorithms are compli-
cated and, as usual, are based on the solution of complex dif-
ferential equations. Another estimation method in engineer-
ing analysis and predictions is applying techniques provided
by artificial intelligence [43]. One of them is Artificial Neu-
ral Networks (ANNs). Compared to the complex numerical
and analytical methods as well as the high costs of empirical
experiments, neural networks constitute an alternative ap-
proach to data handling [56]. This paper presents ANN tech-
niques to predict the NOx(i.e., NO + NO2) emissions from
coal combustion under air-fired and oxygen-enriched condi-
tions in CFB combustors. Simulation results agree well with
experimental data, not only qualitatively. Moreover, the pro-
posed methodology delivers quantitative agreement of cal-
culated data with experimental results.

2. NOx emissions: theory

Many works deal with the NOx emissions from CFB fossil
fuel combustion, since nitrogen oxides are some of the most
harmful components of flue gas from CFB boilers. Some
of them are described in this section. Interesting studies
of NOx formation are presented by Zhao et al. [31]. The
authors used a pilot CFB combustor with a riser which is
0.152 m square and 7.3 m tall. Five fuels were burned, i.e.
(in order of decreasing rank) coals: anthracite, Minto (a high
sulfur bituminous coal), Highvale (a subbituminous coal), lig-
nite and petroleum coke. The authors underlined that oxi-
dation of volatiles and char-bound nitrogen take part in NOx

formation. The local temperature, oxygen partial pressure
and the presence of catalysts are also important factors as
they have an impact on volatiles release and combustion pro-
cesses. Reduction of NOx is favored by the presence of char
and the lower oxygen partial pressures, whereas the NOx

formation mechanism dominates for higher oxygen partial
pressures and higher volatile release. The complex effect
of the addition of limestone on NOx formation was also ob-
served. Generally, limestone is considered to be a factor
leading to an increase in NOx formation. The reason is that
for high-volatile fuels (e.g. Minto coal —33.1% of volatile
matter) calcined limestone surface acts as a catalyst for ox-
idation of volatile nitrogen. On the other hand, when the
volatile content in fuel is low (e.g. 10% for petroleum coke)
the presence of calcined limestone acts as a catalyst for NO
reduction by CO and this mechanism becomes dominant in

such cases [31]. These results are consistent with the opin-
ion that low rank coals can yield more NOx than higher rank
ones [13]. Luis et al. [8]used a CFB combustor with a riser
of 0.161 m i.d. and 6.2 m high to investigate the influence of
five operating parameters on NOx emissions. Downmill bitu-
minous coal was burned during the study. The effects of bed
temperature, air staging, excess air, limestone addition and
coal particle size were investigated in the study. The NOx

emission increased with the bed temperature due to the de-
crease in char and CO concentration. Higher temperatures
also promoted the oxidation of NCO to NO. The NOx emis-
sion increased with the excess air. Similar to the opinion
expressed by Gungor and Eskin [12] the authors observed
that higher oxygen concentration in the riser enhances the
combustion of char and volatile matter especially in the lower
part of the furnace and leads to an increase in NOx forma-
tion. The char and CO concentration throughout the riser
are also lower, which deteriorates the NOx reduction mech-
anisms. The authors also confirmed that staged combustion
is a useful method to decrease NOx emission. The concen-
tration of NOx in flue gas decreased as the secondary air
ratio increases. The authors give three reasons for this. First
of all, atmosphere with limited oxygen in the lower zone of
the combustion chamber tents to conversion of volatiles-N to
N2 instead of NOx. A higher secondary air ratio also leads
to an increase in char and CO concentration in the lower
part of the furnace, causing higher NO decomposition. Fi-
nally the residence time of gas in the bottom zone of the
combustion chamber increases with the secondary air ratio.
As a result, the NOx decomposition becomes a more domi-
nant mechanism over NOx formation, throughout the height
of the combustion chamber. The coal particle size slightly in-
fluences the NOx emission [8], which increases with a mean
coal particle diameter. One of the explanation is based on
the difference between the intensity of combustion and de-
volatilization processes for fine and coarse particles. The
complex dependence of NOx emission on CaO addition has
been also discussed by Luis et al. [8]. The decrease in NO
emission with SO2 was explained by the CO oxidation inhibi-
tion that occurs in the presence of sulfur dioxides. The NOx

emission increased with the Ca/S molar ratio, due to the cat-
alytic effect of CaO. The authors also observed the reverse
mechanism, when limestone addition leads an NO decrease
because CaO acts as the catalyst for NO reduction. Such
effects are responsible for differences in NOx emissions re-
ported by Amand et al. [2] and the results agree with the data
shown in[31, 32]. The influence of limestone addition at two
different positions in the riser on gaseous pollutants emis-
sions were investigated during the study. Limestone was in-
jected at the bottom of the riser and above the secondary air
injection of a CFB system. The influence of this undertaking
was small and resulted in the difference of about 10 ppm in
NO/ NOx emissions. One of the reasons is the long volatile-
N time release, according to the observations reported by
Zhao et al. [31]. The dependence between NOx emissions
and the Ca/S ratio was also observed by Feng et al. [10].
During combustion of coal containing 20.9% of volatile mat-
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ter in CFB combustor the NOx concentrations increased with
the Ca/S ratio. It seems that to attain the volatile content
of 20.9% calcined limestone surface still acts as a catalyst
for volatile nitrogen oxidation [31]. The scale-up problem of
CFB boilers with respect to pollutants emissions was inves-
tigated by Knobig et al. [18]. Industrial-size 12 MWth CFB
combustor (height: 14 m, cross-sectional area of the riser:
1.6 m x 1.6 m) and lab-scale facility (height: 16 m, inner
diameter of the riser: 0.1 m) were used during the study. Al-
though the axial NO concentration profiles of both combus-
tors had basically the same shape, the general finding was
that some significant deviations of the profiles can be also
recognized. The authors pointed out three-dimensional ef-
fects in the large-scale combustor as well as differences in
particle size distribution in the fuel feed [18]. The importance
of air staging in NO emissions was also described in [19–
21]. The authors observed that advanced air staging, when
the second stage is located after the separation of the solid
particles from the flue gas, leads to a significant reduction in
NO. The results obtained by Amand and Leckner [3] revealed
that NO emissions depend on the char loading of the boiler
and the existence of unburned combustible matter such as
CO and H2 in the gas phase, whereas these parameters are
influenced also by the bed temperature, fuel type and the air-
to-fuel ratio in the furnace. The authors also confirmed that
the NO emissions tend to increase with the volatiles con-
tent in the fuel used in the study [4]. NOx emissions un-
der different operating conditions were also investigated by
Gungor [11]. The experiments were carried out on 50 kW
and 80 kW pilot-scale CFB combustors as well as a 160 MW
large-scale CFB boiler. The author observed that NOx emis-
sions deceased with the air excess and inlet bed pressure,
and increased with the operational bed velocity. The effect
of the ash recirculating ratio on NOx emissions from a CFB
combustor was studied by Feng et al. [10]. The NOx con-
centration in flue gas decreased with ash recirculation ratio.
There are also some results concerning NOx emissions from
CFB boilers operated under oxygen-enriched atmospheres
[6, 7, 9, 14, 17–26, 30–57]. The Mini-CFBC 75 kWth boiler
with a riser of 0.1 m i.d. and 5 m tall was used to study oxy-
fuel combustion with flue gas recycle [17]. Bituminous and
sub-bituminous coals were fired. An increase in NOx con-
centration in flue gas was reported during the oxy-fuel com-
bustion. In spite of the fact that the NOx concentration was
twice as high as under the air-firing mode, the total amount
of NOx emitted was about the same due to the lower flue gas
volume from the oxy-fuel-fired unit. Similar results were ob-
tained by Canmet ENERGY [14–16, 28], Nsakala et al. [26]
and Varonen et al. [30]. Slightly different results are pre-
sented in [9] . A pilot-scale (30–100 kW) CFB reactor was
used to carry out a set of tests performed under oxy-fired
conditions at VTT Finland. The NO emissions were compa-
rable with those obtained during air mode. The above liter-
ature review indicates the complexity of the NOx emissions
mechanism occurring during coal combustion, both in air-
fired and oxy-fuel CFB conditions. As the discussion about
dominant mechanisms over the NOx formation is still open,

especially in oxy-fuel conditions, there is a clear need for
a simple to use and reliable model that can quickly and accu-
rately predict NOx emissions from different combustors over
a range of unit dimensions, operating conditions and physi-
cal properties of fuel burned in the CFB boilers. In this paper
the authors present a model of NOx emissions developed
using the artificial neural network approach. The necessary
data for this work to train the neural network was collected
from experiments presented in the literature. The data set
consisted of 70 patterns including experimental results from
large- and pilot-scale CFB combustors, operated both under
air-fired and oxygen-enriched conditions.

3. Results and discussion

3.1. Neural network modeling

Artificial neural networks (ANN) are useful in many fields
of science, knowledge and technology. They provide an al-
ternative approach to the simulation of complex, ill-defined
and uncertain systems [55, 57–59]. Among others ANN
are used in atmospheric sciences and energy engineer-
ing systems. Kalogirou [56] divided all the ANN applica-
tions into the following groups: classification, forecasting,
control systems, optimization and decision-making. Giving
some examples the author listed among others: modeling
of the combustion processes in incineration plants, the pre-
dictive control of a thermal plant, modeling of the chemi-
cal reactions in turbulent combustion simulations [60–62].
Other examples of ANN applications include: modeling of
engine emissions, control and modeling of power genera-
tion systems, load forecasting and prediction, chemical re-
actor modeling, air-quality prediction, heat transfer analy-
sis, robotics [23, 24, 52, 58–86]. Liukkonen et al. [23, 24]
used an unsupervised artificial neural network, Kohonen
self-organizing map and multilayer perceptrons for the pre-
diction of NOx emissions from utility-scale atmospheric CFB
boilers. An ANN model was applied to predict the NOx emis-
sions from a 600 MW capacity pulverized coal combustion
boiler [65, 86]. Jensen et al. [58] implemented the neural
network to investigate mercury speciation emissions from
coal fired boilers. A special issue of Chemical Engineer-
ing and Processing was dedicated to the application of neu-
ral network, soft and hybrid computing in the area of mul-
tiphase reactors [87]. Some papers deal with the applica-
tion of neural networks in the area of hydrodynamics and
mass transfer [88–90], reactor design and scale up with the
presence of chemical reactions [90–93]. Neural networks
enjoy popularity because of their features. As they can learn
the relationship between the input and output variables from
given examples, they do not need any detailed information
about the studied processes, unlike multiple linear and non-
linear regression [56]. They operate like a “black box” and
their learning process resembles the operation of a human
brain [58, 63]. They have the ability to ignore redundant
and excess data, use incomplete data sets and concen-
trate on more important inputs [56, 58, 59]. Since a single
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neuron has a limited memorizing capacity, a neural network
consists of a group of interconnected (by so-called weights)
neurons (perceptrons) [58, 63]. The knowledge about the
process acquired by the model during the learning stage
is stored in the ANN structure and weights [56, 84].The
studied process involves the ANN’s architecture, the activa-
tion function of a neurons and the number of perceptrons.
Therefore there are, e.g., recurrent, feed-forward, Kohonen,
Hopfield, probabilistic and Bayesian–Gaussian neural net-
works [23, 24, 58, 72, 90, 94]. Some of them refer to su-
pervised, others to unsupervised or self-organizing neural
networks. In this paper a multilayer ANN was applied since
feed-forward neural networks are widely used in engineering
applications [56, 58, 63, 82]. Perceptrons in such networks
are arranged in three kinds of layers and form input, inter-
mediate (so-called hidden) and output layers. Such ANNs
can contain one or more hidden layers. Suitable architec-
ture and the appropriate number of hidden neurons must
be established for the ANN model, to achieve the required
accuracy of neural network estimation. Therefore, in order
to constitute a useful tool, a neural network needs to be
prepared in advance in the following principle steps: set-
ting ANN architecture initial values of weights (between 0
and 1), normalization of input and output signals, training
(learning) process [59, 71]. The learning stage applied in
this study consists of supervised learning, where the input
pattern is repeatedly and simultaneously presented with its
corresponding output pattern. For example, during overall
heat transfer calculations such data sets consisted of 64,
29 and 69 input and output patterns, for membrane-walls,
SH I and SH II, respectively [72]. The learning process al-
lows one to modify the connection weights through a suitable
learning method and to adjust them to produce the desired
output. The ability of the artificial neural network to repro-
duce a process from training examples is called the neu-
rocomputing approach and differs from programmed com-
puting approach, which consists of writing algorithms using
a mathematical model of the studied process [58]. A sim-
ple, powerful and reliable training method, often used to train
artificial feed-forward neural networks, is the Back Propaga-
tion (BP) scheme [56, 69]. The BP technique is an itera-
tive gradient algorithm for minimization of the mean square
error between the desired and predicted output. In the BP
scheme the difference between outputs and the pattern is
the measure of the weights modification rate. The logarith-
mic sigmoid and the hyperbolic tangent sigmoid function are
the most commonly used activation functions in such neu-
ral networks. Different activation functions can also be ap-
plied in each layer of the network [63]. When the criterion of
the mean square error is fulfilled and the network has good
generalization ability (i.e., the ability to accurately predict the
validation data set, not previously seen in the neural net-
work) the learning step is finished [63]. A neural network
prepared in this way is a useful tool for performing quick,
non-iterativecalculations [58].

3.2. Model evaluation for NOx emission in air-fired and
oxygen-enriched CFB conditions

Figure 1: The structure of the multilayer neural network

The idea of using ANN previously emerged for the pre-
diction of the overall heat transfer coefficient for membrane
walls, Superheater I (SH I, Omega Superheater) and Super-
heater II (SH II, Wing-Walls) in the combustion chamber of
the large-scale 260 MWe CFB boiler [72]. A similar approach
was taken in this paper to create a simple and reliable model
for the estimation of NOx concentration in flue gas during
coal combustion in large- and small-scale CFB boilers oper-
ating in air-fired and oxygen-enriched conditions. The archi-
tecture of the neural network applied in the paper is shown in
Fig. 1. The neural network is made of four layers: the input
layer, two hidden layers and the output layer.

Table 1: Input parameters used for training and testing ANN
Input parameter Range of values
Operating Conditions
T, K 990 – 1251
PG, - 0.40 – 1.0
λ, - 1.10 – 2.23
Co2, - 0.209 – 0.450
R, - 0.0 – 0.702
v, m/s 1.75 – 8.30
Ca/S - 0.0 – 6.7
mc, kg/s 0.000972 – 61.6
Fuel properties (Air-Dried Basis)
VM, wt. % 11.0 – 37.9
A, wt. % 1.0 – 38.3
C, wt. % 26.8 – 86.9
N, wt. % 0.34 – 2.1
d32, m 0.00004 – 0.006
Geometry parameters
H/De, - 3.04 – 50.0
H/ (H-HSG), - 1.0 – 1.4

The number of neurons in the input and output layers are
the same as the number of input and output parameters, re-
spectively. A highly accurate model for the prediction of NOx

emissions needs some detailed information of CFB combus-
tors, as they are different in size, they have different height
and cross-section of the combustion chamber, e.g. circular,
square and rectangular, some of them are large- whilst oth-
ers small-scale boilers [8, 11, 12, 15–17, 22, 95, 96]. Most of
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them have been fitted with cyclones, but the 261 MWe COM-
PACT CFB boiler operated in Turow Power Station in Poland
is equipped with two compact separators, providing an ex-
ample of second generation boiler design [46, 95, 96]. The
fuel properties and operating parameters for both air-fired
and oxygen-enriched conditions should be taken into ac-
count for the purposes of accurately training the ANN model.
An attempt has been made to apply all possible factors that
affect NOx emissions. Therefore the set of input parameters
consists of a number of operating conditions, fuel properties
and geometry factors of the combustion chamber. The input
parameters are as follows: the average bed temperature T ,
the primary gas ratio PG, the excess oxygen λ, the oxygen
concentration in the inlet gas CO2 , the flue gas recycle ra-
tio R, the average gas velocity in the riser v, the Ca/S molar
ratio, coal feed rate , volatile matter VM, nitrogen N, carbon
C and ash A content in the coal, the Sauter mean diameter
of the coal particles d3.2 and two geometry factors: H/De ,
H/(H − HS G). The R parameter is the ratio of recycled flue
gas to the total amount of flue gas from coal combustion. For
the cases when the boiler was not supplied by secondary
gas the parameter HS G is assumed to be 0 for calculation
purposes. The input parameters and their ranges are given
in Table 1. The carbon and ash content in the fuel as well
as the coal feed rate are taken into account by the model
among the input parameters, as they can be easily acquired
from fuel analysis and operating conditions. These parame-
ters also improve the accuracy of the model and have been
shown to be important for NOx emissions [23, 24]. For ex-
ample, the fuel feed rate is directly connected with the load
of the boiler, thereby influencing the NOx emissions. The
output variable is the NOx concentration in flue gas. For
the assumed data set the output and input layers consist of
one and fifteen neurons, respectively. One Back Propaga-
tion scheme called the Lee and Park’s algorithm, consisting
in simultaneous changing the momentum and learning rate
during the training phase, was applied for normalization of
input and output parameters [71]. The coefficient of determi-
nation R2 of the linear regression line between the predicted
values from the neural network and the desired output, the
mean absolute error MAE and the mean relative error MRE
were used in order to select the optimal number of neurons
in the hidden layers.

On the basis of the preliminary calculations as well as
previous experience [71], the hyperbolic tangent sigmoid
function is applied as the activation function for all percep-
trons. ANN models with the hyperbolic tangent sigmoid func-
tion produce higher coefficients of determination and lower
errors compared to ANN models with the logarithmic sig-
moid activation function. The inputs consisted of 70 input-
output data sets, obtained from large- and small-scale, atmo-
spheric CFB boilers, operating under air-fired and oxygen-
enriched modes, reported in the literature [7, 8, 11, 12, 15–
17, 22, 37, 95]. The simulations are carried out for air-firing
as well as three different oxygen-enriched conditions, i.e.,
when combustion runs in a gas mixture based on O2 and
N2, and also when combustion takes place in N2-free atmo-

Table 2: Errors of the NOx emissions for different ANNs
Model Structure R2 MAE MRE

1 15-3-3-1 0.9044 25.875 0.141
2 15-3-6-1 0.9352 18.992 0.087
3 15-3-9-1 0.9303 19.254 0.089
4 15-3-12-1 0.9431 18.295 0.084
5 15-3-15-1 0.9399 18.931 0.090
6 15-6-3-1 0.9264 19.776 0.090
7 15-6-6-1 0.9236 20.667 0.097
8 15-6-9-1 0.9347 19.145 0.088
9 15-6-12-1 0.9375 18.590 0.085
10 15-6-15-1 0.9332 18.760 0.085
11 15-9-3-1 0.9066 24.302 0.123
12 15-9-6-1 0.9334 18.883 0.087
13 15-9-9-1 0.9332 19.06 0.088

14 15-9-12-1 0.9476 17.253 0.080

15 15-9-15-1 0.9317 19.958 0.093
16 15-12-3-1 0.9140 21.848 0.103
17 15-12-6-1 0.9213 20.954 0.101
18 15-12-9-1 0.9254 19.576 0.091
19 15-12-12-1 0.9160 20.889 0.097
20 15-12-15-1 0.9324 19.761 0.094
21 15-15-3-1 0.9251 20.694 0.104
22 15-15-6-1 0.9112 24.913 0.138
23 15-15-9-1 0.9214 19.797 0.089
24 15-15-12-1 0.9248 19.268 0.087
25 15-15-15-1 0.9302 19.126 0.087

spheres of O2/CO2 and O2/RFG (Recycled Flue Gas), with
various fractions of oxygen. These data sets were applied
for both training and testing of the developed ANN model.
Since the performance of an ANN depends on its structure,
different architectures were tested as the ability of the net-
work to extract the knowledge of the studied process can be
improved with new perceptrons. The number of hidden neu-
rons varied from 1 to 15 in each hidden layer. This approach
helped cut the risk of memorization instead of generalization
of the relationship between input and output data [63, 78].
This procedure resulted in the need to study and analyze
225 different ANN architectures in total, with various num-
bers of hidden neurons. The selected ANNs with the number
of hidden perceptrons increasing by every three neurons are
given in Table 2. The optimal network was selected from
255 networks based on the above error measures. All the
calculations were performed in the C++ programming lan-
guage. 3.3. When selecting the optimal structure based
on observations of the learning processes, a neural net-
work with a higher number of hidden neurons generally pro-
duced smaller errors and needed fewer training epochs to
obtain good results compared to ANN models with few hid-
den perceptrons. The training of neural networks containing
more hidden neurons also proceeded more effectively and
the mean square error decreased more quickly compared to
the network containing fewer hidden neurons. The best ANN
architecture turned out to be the [15-9-12-1] model, with the
highest coefficient of determination R2 equal to 0.9476 as
well as the lowest errors: mean absolute error (17.253) and
mean relative error (0.08).

Another interesting ANN is the [15-3-12-1] architecture,
but R2 is lower and error measures (MAE, MRE) are higher
than with the [15-9-12-1] type ANN model. Therefore, the
[15-9-12-1] ANN is the optimal configuration for the consid-
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Figure 2: Comparison of NOx emissions desired and predicted by the [15-
9-12-1] ANN model

Table 3: NOx emissions desired and predicted by the model

Cd
NOx

Niter = 10001
Cp

NOx δ
ppm ppm %

Data used for training network

air-fired conditions

117.70 118.71 0.86
347.80 341.64 1.77
164.00 170.95 4.24
138.14 122.52 11.30
117.00 117.03 0.02

oxy-fuel conditions

443.00 487.86 10.13
333.00 303.88 8.75
210.00 200.59 4.48
309.00 321.02 3.89
215.00 235.83 9.69

Data not used for training network

air-fired conditions

117.50 114.72 2.37
188.00 174.81 7.02
132.34 122.49 7.45
444.40 412.41 7.20
99.10 99.49 0.40

oxy-fuel conditions...

250.00 290.77 16.31
216.00 237.13 9.78
579.00 464.75 19.73
230.00 257.52 11.97
238.00 233.29 1.98

ered task and this model is used for further calculations. The
[15-9-12-1] type network consists of twenty one hidden neu-
rons with nine and twelve perceptrons in the first and the sec-
ond hidden layer, respectively. The ANN model was tested
after the learning stage using samples, both training and new
ones, unseen before in the network. Some of the results of
NOx emissions, predicted by the [15-9-12-1] ANN model as
well as desired values obtained from experiments are shown
in Table 3. The NOx concentrations predicted by [15-9-12-1]
ANN model are located within the limits of ±20% related to
the experimental data. The relative errors δ between and for
most of the data given in Table 3, even for data previously
unseen by the network (new data, not previously used for
training) are less than 10% and in some cases—even less
than 1%. The maximum and minimum values of the relative
error are equal to 19.73% and 0.02%, respectively. The com-
parison between NOx emissions obtained from experiments
for different operating conditions and the corresponding data

estimated by [15-9-12-1] type of ANN are shown in Fig. 2.

Figure 3: Application of the ANN for calculating NOx emissions

Good accuracy in the prediction of NOx emissions from
coal combustion in CFB boilers operated both in air-fired and
oxy-fuel conditions was obtained.

The prepared ANN model is a tool capable of optimizing
operating conditions in order to keep under control the NOx

emissions from coal combustion in CFB boilers. The model
can be easily applied to calculate NOx concentrations via the
non-iterative procedure. The flow chart of such ANN appli-
cation is given in Fig. 3.

Figure 4: Comparison of the NOx emissions desired and predicted by [15-
9-12-1] type ANN for air-fired CFB conditions

The results of the non-iterative neurocomputing calcula-
tions carried out for air-fired and oxygen-enriched conditions
are given in Fig. 4 and Fig. 5, respectively.

The measured data of NOx emissions, corresponding to
air-fired and oxy-fuel conditions, taken from literature [8, 11,
12, 15–17, 22] are regarded as the desired values.

The ANN model correctly predicts the NOx emissions from
coal combustion in CFB boilers, both for air-fired and oxygen-
enriched conditions, i.e., the ANN model predicts accurate
results compared to experimental data.
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Figure 5: Comparison of the NOx emissions desired and predicted by [15-
9-12-1] type ANN for oxy-fuel CFB conditions

4. Conclusion

In this study the ANN model was developed to determine
the NOx emission from coal combustion in the CFB boilers,
in air-fired and oxygen-enriched conditions. The best feed-
forward ANN topology was established, appropriate for the
task considered in the paper, under a wide range of operat-
ing conditions. The model provides quick and reliable pre-
dictions of NOx emissions for both large- and small-scale
CFB combustors for any input pattern of the boiler operating
parameters (under different conditions). The model consid-
ers a wide range of parameters influencing NOx formation
from coal combustion in CFB boilers. All results obtained
using the ANN model are located within the limits of ±20%
compared to the experimental data, but some of them are
even lower than 1%. The model with tangent sigmoid activa-
tion function is capable of predicting the NOx emission with
good accuracy and can be applied to solve and generalize
the complex relationship between NOx emissions and oper-
ational parameters for a variety of CFB boilers of different
capacity. Taking into account these abilities, the ANN model
constitutes a very effective tool for the purposes of simulation
and optimization of CFB systems.

Acknowledgments

The financial support of this work by the Polish Govern-
ment, as part of Framework Project: Supercritical Coal-fired
Power Units, is gratefully acknowledged.

References

[1] National Center for Environmental Assessment-RTP Division, Office of
Research and Development, U.S. Environmental Protection Agency,
Research Triangle Park, EPA/600/R-08/082F. Integrated Science As-
sessment for Oxides of Nitrogen - Health Criteria (2008).

[2] L. Amand, B. Leckner, K. Dam-Johansen, Influence of SO2 on the
NO/N2O chemistry in fluidized bed combustion: 1. full-scale experi-
ments, Fuel 72 (1993) 557–564.

[3] L.-E. Åmand, B. Leckner, Influence of fuel on the emission of nitrogen
oxides (NO and N2O) from an 8-MW fluidized bed boiler, Combustion
and Flame 84 (1-2) (1991) 181–196.

[4] L. Amand, B. Leckner, The role of fuel volatiles for the emission of
nitrogen oxides from fluidized bed boilers - a comparison between de-
signs, in: Proc. of the 23rd International Symposium on Combustion,
1990, pp. 927–933.

[5] P. Basu, Combustion of coal in circulating fluidized-bed boilers: a re-
view, Chemical Engineering Science 54 (22) (1999) 5547–5557.

[6] E. Bool, S. Laux, E. Eddings, Oxy-coal combustion in small-scale CFB,
in: Proc. Of th 35th International Technical Conference on Clean Coal
& Fuel Systems, Florida, USA, 2010, pp. 190–196.

[7] T. Czakiert, W. Muskala, S. Jankowska, G. Krawczyk, P. Borecki, L. Je-
sionowski, W. Nowak, The effect of oxygen concentration on nitrogen
conversion in oxy-fuel CFB environment, in: 21 International Confer-
ence on fluidized bed combustion, Naples, Italy, 2012, pp. 495–502.

[8] F. Luis, C. A. Londono, X. S. Wang, B. M. Gibbs, Influence of operating
parameters on nox and n2o axial profiles in a circulating fluidized bed
combustor, Fuel 75 (8) (1996) 971–978.

[9] T. Eriksson, O. Sippu, A. Hotta, M. K. Zhen Fan, T. Hyppänen,
T. Pikkarainen, Oxyfuel CFB boiler as a route to near zero CO2 emis-
sion coal firing, in: Power-GEN Europe, 2007, pp. 26–28.

[10] B. Feng, H. Liu, J.-W. Yuan, Z.-J. Lin, D.-C. Liu, B. Leckner, Nitrogen
oxides emission from a circulating fluidized bed combustor, Interna-
tional Journal of Energy Research 20 (11) (1996) 1015–1025.

[11] A. Gungor, Prediction of so 2 and no x emissions for low-grade turk-
ish lignites in cfb combustors, Chemical Engineering Journal 146 (3)
(2009) 388–400.

[12] A. Gungor, N. Eskin, Two-dimensional coal combustion modeling of
cfb, International Journal of Thermal Sciences 47 (2) (2008) 157–174.

[13] A. Hayhurst, A. Lawrence, The amounts of nox and n2o formed in a
fluidized bed combustor during the burning of coal volatiles and also of
char, Combustion and flame 105 (3) (1996) 341–357.

[14] L. Jia, Y. Tan, D. McCalden, Y. Wu, I. He, R. Symonds, E. Anthony,
Commissioning of a 0.8 mw th cfbc for oxy-fuel combustion, Interna-
tional Journal of Greenhouse Gas Control 7 (2012) 240–243.

[15] L. Jia, Y. Tan, Y. Wu, E. Anthony, Oxy-fuel combustion tests using a 0.8
mwth pilot-scale circulating fluidized bed, in: Proceedings of the 21st
International Conference on Fluidized Bed Combustion, Naples, Italy,
2012, pp. 381–388.

[16] L. Jia, Y. Tan, E. Anthony, Emissions of so2 and no x during oxy- fuel
cfb combustion tests in a mini-circulating fluidized bed combustion re-
actor, Energy & Fuels 24 (2) (2009) 910–915.

[17] L. Jia, Y. Tan, C. Wang, E. Anthony, Experimental study of oxy-fuel
combustion and sulfur capture in a mini-cfbc, Energy & Fuels 21 (6)
(2007) 3160–3164.

[18] T. Knöbig, J. Werther, L.-E. Åmand, B. Leckner, Comparison of large-
and small-scale circulating fluidized bed combustors with respect to
pollutant formation and reduction for different fuels, Fuel 77 (14) (1998)
1635–1642.

[19] B. Leckner, Fluidized bed combustion: mixing and pollutant limitation,
Progress in Energy and Combustion Science 24 (1) (1998) 31–61.

[20] B. Leckner, L.-E. Åmand, K. Lücke, J. Werther, Gaseous emissions
from co-combustion of sewage sludge and coal/wood in a fluidized
bed, Fuel 83 (4) (2004) 477–486.

[21] B. Leckner, A. Lyngfelt, Optimization of emissions from fluidized bed
combustion of coal, biofuel and waste, International journal of energy
research 26 (13) (2002) 1191–1202.

[22] H. Liu, B. M. Gibbs, The influence of limestone addition at different
positions on gaseous emissions from a coal-fired circulating fluidized
bed combustor, Fuel 77 (14) (1998) 1569–1577.

[23] M. Liukkonen, M. Heikkinen, T. Hiltunen, E. Hälikkä, R. Kuivalainen,
Y. Hiltunen, Artificial neural networks for analysis of process states in
fluidized bed combustion, Energy 36 (1) (2011) 339–347.

[24] M. Liukkonen, T. Hiltunen, E. Hälikkä, Y. Hiltunen, Modeling of the
fluidized bed combustion process and no x emissions using self-
organizing maps: an application to the diagnosis of process states,
Environmental Modelling & Software 26 (5) (2011) 605–614.

[25] D. Mao, J. R. Edwards, A. V. Kuznetsov, R. K. Srivastava, Three-
dimensional numerical simulation of a circulating fluidized bed reac-
tor for multi-pollutant control, Chemical engineering science 59 (20)

— 81 —



Journal of Power Technologies 97 (2) (2017) 75–84

(2004) 4279–4289.
[26] N. Nsakala, G. Liljedahl, D. Turek, Greenhouse gas emissions con-

trol by oxygen firing in circulating fluidized bed boilers: Phase ii – pi-
lot scale testing and updated performance and economics for oxygen
fired CFB, Tech. rep., PPL Report No. PPL-04-CT-25 under coopera-
tive agreement No. DE-FC26-01NT41146 (2004).

[27] G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel
coal combustion—a review of the current state-of-the-art, International
Journal of Greenhouse Gas Control 5 (2011) S16–S35.

[28] Y. Tan, L. Jia, Y. Wu, E. Anthony, Experiences and results on a 0.8
mwth oxy-fuel operation pilot-scale circulating fluidized bed, Applied
Energy 92 (2012) 343–347.

[29] M. B. Toftegaard, J. Brix, P. A. Jensen, P. Glarborg, A. D. Jensen, Oxy-
fuel combustion of solid fuels, Progress in energy and combustion sci-
ence 36 (5) (2010) 581–625.

[30] T. Klajny, J. Krzywanski, W. Nowak, Mechanism and kinetics of coal
combustion in oxygen enhanced conditions, in: 6th International Sym-
posium on Coal Combustion, Wuhan, China, 2007, pp. 148–153.

[31] J. Zhao, C. Brereton, J. R. Grace, C. J. Lim, R. Legros, Gas concentra-
tion profiles and NOx formation in circulating fluidized bed combustion,
Fuel 76 (9) (1997) 853–860.

[32] L. Duan, C. Zhao, W. Zhou, C. Qu, X. Chen, O 2/co 2 coal combus-
tion characteristics in a 50kw th circulating fluidized bed, International
Journal of Greenhouse Gas Control 5 (4) (2011) 770–776.

[33] T. Eriksson, K. Nuortimo, A. Hotta, K. Myöhänen, T. Hyppänen,
T. Pikkarainen, Near zero co2 emissions in coal firing with oxyfuel cfb
boiler, in: Proc. of the 9th International Conference on Circulating Flu-
idized Beds, Hamburg, Germany, May, 2008, pp. 13–16.

[34] A. Blaszczuk, W. Nowak, S. Jagodzik, Effects of operating conditions
on denox system efficiency in supercritical circulating fluidized bed
boiler, Journal of Power Technologies 93 (1) (2013) 1.

[35] A. Blaszczuk, M. Komorowski, W. Nowak, Distribution of solids con-
centration and temperature within combustion chamber of sc-otu cfb
boiler, Journal of Power Technologies 92 (1) (2012) 27–33.

[36] B. Harris, J. Davidson, Modelling options for circulating fluidized beds:
a core/annulus deposition model, Circulating fluidized bed technology
IV (1994) 32.
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Nomenclature

δ relative error,

λ excess oxygen, -

A ash content, wt.

C carbon content, wt.

CNOx nitrogen oxides concentration, ppm

Ca/S calcium to sulfur molar ratio, -

CO2 oxygen concentration,

d3.2 the Sauter diameter of coal particles

De hydraulic furnace diameter, m

H height of the combustion chamber, m

HSG height of secondary gas inlet, m

mc coal feed rate, kg·s-1

N nitrogen content, wt.

Niter number of epochs, -

PG primary gas ratio, -

R flue gas recycle ratio,
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T average bed temperature, K

v average gas velocity in the riser, m·s-1

VM volatile matter content, wt.
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