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Abstract

The aim of the study is to evaluate methods for determining appropriate pumped storage capacities. This is
especially relevant, since pumped storage units are, today, viewed as some of the best means of storing large
amounts intermittently-produced power in order to meet peak demands on power supply grids. The deter-
mination of appropriate pumped storage capacity is a problem of integrated decision-making. The entropy
weighting method and principal component analysis are combined to determine the optimum pumped storage
capacity, taking into account several representative indices, whilst using the syntropy method to standardize
the data indicators. The entropy weighting method is used to determine the weighting of the indicators, while
principal component analysis offers reduction of the dimensions. The optimal solution is then determined by
ranking the evaluation values for each design. This method can avoid subjectivity in the weighting assignment
and simplifies the calculations to an evaluation problem which contains multiple evaluation indices. Using the
principle of energy-saving scheduling, the peak-shaving method is applied to the dispatching over a typical
daily load in order to verify the rationality of the calculated pumped storage capacity. The example analysis,
here, shows that it is reasonable to determine the optimum pumped storage capacity by using this combination
of the entropy weighting method and principal component analysis.

Keywords: Pumped storage, Capacity determination, Integrated decision-making, Entropy weighting
method, Principal component analysis

1. Introduction

For power grids, especially those based mainly on
thermally generated power, it is difficult to meet both
the peak load and the changing gap between peak
load and valley load. The problem is exacerbated by
massive intermittent demands for extra energy from
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users connected to the grid [1]. A pumped stor-
age (P-S) unit has the benefits of a high ramp-up
rate, with quick starting and stopping, whilst it has
low running costs, cleaning requirements, frequency
and phase modulation and minimal black start power
demands. Thus P-S units are considered to repre-
sent the most appropriate technology for meeting de-
mands for large amounts of intermittent power and
meeting the peak loads in power grids [2–4]. How-
ever, determining a reasonable storage capacity is the
key problem.
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In the past, the optimal P-S capacity has al-
ways been determined by individual factors, such as
unit operating cost, loss of load probability, peak-
regulation proportion, wind and nuclear power ca-
pacity, generator utilization hours, and other indices.
Therefore, it was inevitable that mismatch problems
would appear. To determine appropriate P-S capac-
ity is an issue of comprehensive decision-making
and integration, and at present the main methods are
the analytic hierarchy process (AHP), fuzzy com-
prehensive evaluation [5, 6], the entropy weight-
ing method, principal component analysis (PCA)
and combinations thereof. Currently, the AHP and
fuzzy methods are rarely used alone for evaluation
because the index weightings represent contingen-
cies which are very subjective, even when judged
by experts. Hence, various combination algorithms
have been widely applied to combination evalua-
tions, such as the AHP and fuzzy methods [7, 8],
AHP and other algorithms [9, 10] and fuzzy and
other algorithms [11, 12]. In order to avoid subjectiv-
ity in the process of determining the weightings, the
entropy method [13, 14] and PCA algorithm [15, 16]
are used extensively.

There are also some evaluation research ap-
proaches which combine the entropy method and the
PCA algorithm [17, 18]. However, the applicability
of this and their rationality are short of reasonable ex-
planation, and the methods for standardization of the
data are not identical, so this has a significant impact
on the resulting comprehensive evaluation. There is
currently no application for combining the entropy
weighting method and PCA in studies for determin-
ing optimum P-S capacity.

The key issues are the choice of evaluation indices
and determination of the index weighting in the over-
all evaluation process. In this paper, the data indi-
cators are standardized using the syntropy method,
which makes the evaluation results more credible.
Using the entropy weighting method to determine the
weighting of indicators is more objective than PCA,
although the latter can also take the variance con-
tribution rate into account for its weighting. Using
PCA to reduce the dimensions of the indicators can
simplify the calculations to just an evaluation prob-
lem containing multiple evaluation indices.

Finally, we insert the calculated optimal P-S ca-

pacity into the operation of an example system, to as-
sess the accuracy of this value derived from the com-
bination of the entropy weighting method and prin-
cipal component analysis. Since the peak-shaving
method is particularly suitable for scheduling grids
dominated by thermal power, it is used to represent
the dispatching of a typical daily load to demonstrate
the correctness and feasibility of the predictions of
our method for energy-saving scheduling.

The conclusion validates our method as a means
of avoiding the subjectivity of weighting assignment
and for simplifying the calculations required, as well
as for providing an effective method for multi-index
comprehensive evaluations.

2. Methods of Determining P-S capacity

The benefits of P-S stations can be divided into the
static and dynamic benefits. Static benefits include
the capacity benefit, peak-valley filling efficiency
and coal saving benefits; the dynamic efficiency ben-
efits mainly include frequency-modulation, phase-
modulation, back-up, load tracking, black start, and
improved system reliability. The following section
explains some of the commonly used evaluation in-
dices:

2.1. Capacity benefit
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Figure 1: Curve for P-S capacity vs. the effective capacity

A P-S station can meet peak loads just as a conven-
tional hydropower station does, thereby effectively
obviating the need for other sources, such as thermal
power generation, and thus reducing the investment
needed for these other power sources. The resulting
economic benefits are called capacity benefits. The
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P-S effective capacity curve of a typical system is
shown in Fig. 1 [19].

The effective capacity curve of the example sys-
tem shows that, for P-S capacity it is not simply
a case of the bigger the better, as excess amounts of
P-S capacity can actually reduce the efficiency.

2.2. Considering the capacity of wind and nuclear
power

Because of the uncertainty of wind power output,
the dispatchers have to restrict wind power usage or
to abandon this source altogether when anti-peaking
appears. Using wind power capacity to maintain ap-
propriate P-S capacity means that wind energy can be
effectively stored and released when needed, there-
fore reducing the amount of abandoned wind power
and increasing wind energy utilization. If appropri-
ate P-S capacity is installed in the power system, the
penetration of wind power in the grid can therefore
be improved.

Because nuclear power has an essentially non-
adjustable output, such units can run in tandem with
P-S units of appropriate capacity to enable regula-
tion of the overall power output, and this can greatly
improve the efficiency and safety of the associated
nuclear power plants.

2.3. Peak-regulation proportion

The system peak-regulation proportion is the ratio
between the capacity of the adjustable units and the
total system capacity. By calculating the deficit of
peaking capacity in meeting the peak load in the grid,
we can determine the required installed capacity of
the necessary P-S units. This assumes that all the P-
S capacity is used to its fullest extent and that the P-S
unit can generate at its rated output,

RG =
Pmax − Pmin − 2PP−S

PN
· 100% (1)

where RG is the system peak-regulation propor-
tion; Pmax is the maximum output of all the units and
Pmin is the minimum; PN is the combined rated out-
put of all the units; PP−S is the required P-S capacity.
Only when the difference of peak load accounting for
the largest load ratio is less than or equal to the sys-
tem peak-regulation proportion is the system’s peak
contradiction resolved [20].

2.4. The amount of coal consumption and coal saved
The coal-saving benefit of P-S refers to the differ-

ence in coal consumption for the case under review,
with and without the inclusion of a P-S station. Al-
though operation of the P-S units will result in ad-
ditional cost because of the power used, the over-
all coal consumption will drop as a result of the im-
proved operating mode of the thermal power station,
so the actual coal- saving benefit trade-off depends
on both of these factors.

The P-S stations use power from those coal sta-
tions with the minimum coal consumption in order
to pump water, but are then used to generate elec-
tricity in place of those thermal power units with the
highest coal consumption, so this is the origin of the
benefits of P-S in this alternative.

The annual coal-saving formula can be expressed
as

B = ∆b ·W (2)

∆b = b f − ηbch (3)

where B is the annual coal-saving amount of the
P-S plants (t), W is the annual generation of elec-
tricity (kWh), ∆b is the coal-saving amount per unit
of electricity (g/kWh), b f is the equivalent coal con-
sumption of the units that were replaced by the P-S
units (g/kWh), η is the ratio of pumping to gener-
ation for the P-S units, bch is the coal consumption
of the unit providing the electricity for the pumping
(g/kWh) [21].
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Figure 2: P-S capacity vs. the coal consumption curve

The coal consumption curve and coal-saving curve
of a typical system are shown in Figures 2 and 3,
respectively [19]. It can be seen from the figures that

— 167 —



Journal of Power Technologies 94 (3) (2014) 165–175

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5x 10
5

pumped storage capacity(MW)

co
al

 s
av

ed
(t

)

Figure 3: P-S capacity vs. the amount of coal saved

the P-S units should be chosen with an appropriate
capacity.

2.5. Environmental benefits

The environmental benefits of P-S power plants
are embodied in the transfer of the power production
options to those stations with more efficient coal us-
age, and in the resultant reduction in thermal power
generation emissions. In order to calculate the en-
vironmental benefits of P-S power plants, the effects
of the reduction in pollutants can be unified and their
value calculated according to the formula as follows:

Ce =

k∑
i=1

Eri

Ni
(4)

where Ce is the total equivalent value of pollutant
emission reductions, Eri is the i-th pollutant emission
reduction, Ni is the equivalent value of the i-th pollu-
tants. Here the pollutant emissions can be CO, NOX,
SO2 and smoke [21].

2.6. Spare capacity benefits

Spare capacity includes emergency and
additional-load capacity, where the reserves pro-
vided by P-S power plants are the principal dynamic
benefits, since they are able to supply emergency
power to the grid if part of the system has failed or is
under greater-than-expected load, thereby reducing
any outages by increasing the available supply to
meet the load. The spare capacity benefits in China
are hard to assess because of the current immaturity
of its electricity market mechanism.

2.7. Frequency and phase modulation

By starting up quickly and providing an adjustable
output across a wide range, P-S units can adapt to
sudden load changes and maintain the frequency sta-
bility of the grid. Therefore P-S stations, by bearing
the load regulation and meeting the changing daily
load requirements, can provide load tracking bene-
fits.

A P-S station can supply or absorb reactive power
at run-time, which can reduce the need for reac-
tive power compensation equipment, maintain sys-
tem voltage level stability and therefore result in
phase modulation benefits.

2.8. LOLP

LOLP (Loss of Load Probability) is the probabil-
ity of insufficient power availability. It means that
the power generation system margin has a less than
zero probability in the system. The LOLP can be ob-
tained from the sum of probabilities that the outage
capacity is greater than the power generation margin.
The smaller the value of LOLP, the higher the power
system reliability,

LOLP = P(X ≥ Cs − L) (5)

where X refers to system outage capacity, Cs is
system installed capacity, L is the daily maximum
load.
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Figure 4: LOLP curve

A curve showing the relationship between the in-
stalled P-S capacity and the LOLP of a typical sys-
tem is shown as Fig. 4. As the graph indicates,
the LOLP value first decreases and then rises again
with an increase in P-S capacity. The P-S capacity
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should therefore be chosen appropriately. Overca-
pacity does not reduce the probability of power out-
age; on the contrary, it reduces the supply reliability
of the power system.

2.9. Black-start benefits
System recovery after blackouts over large areas is

known as black start. A P-S station can start without
an external power source and can therefore supply
power to drive other units, so that the power system
can be restored in the shortest time.

P-S units characteristically require few auxiliaries,
need only a small amount of self-power and are quick
to start. Therefore, they represent ideal and conve-
nient black-start power supplies. Whilst it is obvi-
ously beneficial to the reliable operation of the grid
to use P-S units as the black-start power source, it is
difficult to quantify the benefits.

At present, with the current state of China’s elec-
tricity market structure and its electricity pricing sys-
tem, the auxiliary services are not perfect, and there-
fore the dynamic benefits of P-S stations are hard to
calculate accurately.

3. Introduction to entropy and PCA

3.1. Entropy
Derived from thermodynamics, the concept of en-

tropy can be applied to statistical mechanics, infor-
mation theory and other disciplines. According to
information theory, information is a measure of the
degree of order, while entropy is a measure of disor-
der. Entropy is essentially a quantitative measure of
uncertainty, which can be used to describe the use of
information to assess risk more accurately and eas-
ily. Considering a probability test with n results,
if we set these results with a discrete probability pi

(i = 1 ∼ n), then the entropy is defined as

H (pi) = −

n∑
i=1

pi ln pi (6)

where 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1.
The basic properties of entropy are:

1. Symmetry, the entropy value of pi (i = 1 ∼ n)
has nothing to do with its position in the se-
quence.

2. Non-negativity, i.e., H (pi) ≥ 0 (i = 1 ∼ n).
3. Additivity, the system’s entropy is equal to the

sum of all the entropy components.
4. Extremum property, the maximum entropy

Hmax (pi) = ln n when pi = 1/n (i = 1 ∼ n).
5. Concavity and convexity, H (pi) is a sym-

metrical concave function of all the variables.

To make the ln pi meaningful, we generally assume
that pi ln pi = 0 when pi = 0.

The entropy value reflects the extent of disorder,
which can be used to the impact of the amount of
data on the calculations. The greater the entropy
value, the less the contribution of the information.
Conversely, the smaller the entropy, the greater the
contribution of the information [22].

3.2. Principal component analysis (PCA)

PCA is a commonly-used multiple statistical
method for dimension reduction. The main idea of
PCA is to use a number of unrelated new variables,
instead of the more usual ones, and then to combine
them in a linear manner to form a single variable.
The new variable is called the component, and it re-
tains the information from the original variables as
far as possible. From the angle of statistical analysis,
the contained information can be expressed by vari-
ance, and the bigger the variance, the more meaning-
ful the information.

Figure 5: Dimension-reducing principle schematic diagram of
PCA

— 169 —



Journal of Power Technologies 94 (3) (2014) 165–175

The value of PCA is the translation and rotation of
coordinates. Suppose that there is a two-dimensional
data table. The data is distributed in a long series,
and G is the centre of gravity, as shown in Fig. 5. Let
us move the origin of the coordinate system to G, and
then rotate the coordinate system for transformation.
Taking the direction of maximum data variation as
the axis and ignoring small variations, we can get an
orthogonal coordinate system Y1GY2. Then any two-
dimensional space problems can be reduced to one-
dimensional analysis. The same thinking promotes
the establishment of high-dimensional space.

Suppose the index data are composed by n plans
and p evaluation indexes X=(xi j)n×p, where xi j is the
value of the i-th plan to the j-th index.To standardize
the index data with (7) ,

zi j =
xi j − x j

s j
(7)

x j =
1
n

n∑
i=1

xi j, s j =

√√
1
n

n∑
i=1

(xi j − x j)2 (8)

where x̄ j and s̄ j are the mean and mean square er-
ror of the j-th index respectively. The standardized
index data Z =

(
zi j

)
n×p

=
(
Z1,Z2, ...,Zp

)
satisfied

with

E
(
Z j

)
= 0, D

(
Z j

)
= 1 ( j = 1, 2, . . . , p) (9)

The means are 0 and mean square errors are 1 for
all p variables, which is called the Z-score method.
We can establish a standardized data correlation co-
efficient matrix R =

(
ri j

)
p×p, where ri j reflects the

degree of correlation between Zi and Z j.

ri j =
cov(Zi,Z j)
√

D(Zi)
√

D(Z j)
(10)

where cov(Zi,Z j) is the covariance between Zi and
Z j. Since as established by (9), the correlation coef-
ficient matrix and the covariance matrix are equal, R,
the correlation coefficient, can be obtained as

R =
1

n − 1
ZT Z (11)

Solving the eigenvalue of R, if there are q eigen-
values λ1 ≥ λ2 ≥ . . . ≥ λq ≥ 0, the correspond-
ing orthogonal eigenvectors to eigenvalues can be ex-
pressed as A =

(
a1, a2, . . . , aq

)
, then q principal com-

ponents are


y1

y2
...

yq

 =


a11 a21 · · · ap1

a12 a22 · · · ap2
...

...
...

a1q a2q · · · apq




Z1

Z2
...

Zp

 (12)

Turn Equation (12) into matrix form as

Y = AT Z (13)

The principal component has the following prop-
erties:

cov(yi, y j) =

{
0 i , j
λi i = j (14)

Equation (14) shows that the principal components
are unrelated to each other, and the eigenvalue of yi

is the variance of the principal component. The con-
tribution rate of principal component variance to the
total variance is as

ρi = λi/

n∑
j=1

λ j (15)

The contribution rate ρi reflects the i-th principal
component and includes some of the original vari-
able information. Therefore, the first principal com-
ponent has the greatest contribution to the variance,
while the contributions of the subsequent ones are
progressively smaller. Defining the former m princi-
pal components for the cumulated variance contribu-
tion rate as

ρsum =

m∑
i=1

λi/

n∑
j=1

λ j (16)

In order to achieve the objective of dimension re-
duction, if the cumulated variance contribution rate
of the former m principal components is more than
85%, then we can take the former m principal com-
ponents for the original p indexes, and the m princi-
pal components constitute a comprehensive evalua-
tion function as
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f = ρ1y1 + ρ2y2 + · · · + ρmym (17)

where the principal component weight is its con-
tribution rate to the variance.

The PCA is based on the evaluation of dimension
reduction, meaning that the evaluation calculation
can be simplified, thereby also greatly reducing the
workload of the decision makers [23].

4. Comprehensive evaluation model based on en-
tropy and PCA

1. Taking m evaluation indicators to analyze n
schemes, we can get the evaluation matrix as
follows:

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

... · · ·
...

an1 an2 · · · anm

 (18)

2. The standardization method used for the data
has a significant impact on the comprehensive
evaluation result. The Z-score method is widely
used, principally in order to increase the differ-
ence between the data, and to facilitate the eval-
uation, although the principal component has to
be extracted from the correlation coefficient ma-
trix. In this study, the syntropy method is used
to standardize the data indicators. According
to the mechanism analysis and our professional
knowledge, we can define positive and negative
effect indices. For the positive effect index a+

i j,
the bigger the value, the better, while for the
negative effect index a−i j, the smaller, the better,
therefore normalizing the two types of indica-
tor. Define the ratio of ai j and a∗j for the close
degree of ai j on a∗j,

Di j =

{
a+

i j/a
∗
j a∗j = max{a+

i j} f or a+
i j

a∗j/a
−
i j a∗j = min{a−i j} f or a−i j

(19)
Setting D =

∑n
i=1

∑m
j=1 Di j, standardizing Di j

with D, then di j = Di j/D, d j =
∑n

i=1 di j.

3. Obtain the standardized evaluation matrix of in-
dicators

di j =


d11 d12 · · · d1m

d21 d22 · · · d2m
...

... · · ·
...

dn1 dn2 · · · dnm

 (20)

4. Calculate H j , the entropy of indicator j,

H j = −
1

ln n

n∑
i=1

di j

d j
ln

di j

d j
j = 1, ...,m (21)

5. For the unbiased index weighting formula,

w j =
1 − H j

m −
∑m

j=1 H j
(22)

where:
∑m

j=1 w j = 1, ( j = 1, ...,m). The big-
ger the weighting and the greater the influence
of the indicators, the greater their contribution
to the scheme evaluation. Although the PCA
method can also take the variance contribution
rate as the weighting, using the entropy weight-
ing method to determine the weighting of the
indicators is more objective than with PCA.

6. If PCA is carried out on di j, and we calculate
the correlation coefficient matrix R, then we can
calculate the corresponding eigenvalues λ,

λ = diag(λn) n = 1, ..., p (23)

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 (24)

and calculate the variance contribution rate ρi,
if ρsum > 85%, then take the former m principal
components for the original p indexes.

7. Calculate the evaluation value of n schemes
with the entropy method

Fi =

m∑
j=1

w jdi, j, i = 1, . . . , n (25)

Sort the values of Fi, and the maximum value of
Fi is the optimal solution [17].
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Figure 6: Power grid system diagram

5. Example analysis

5.1. The determination of P-S capacity

A simplified power grid system, as sketched in
Fig. 6, can be used to illustrate the proposed method
and dispatch model. The thermal, hydro and wind
power capacities are 15000 MW, 1000 MW and
3000 MW, respectively. The planned P-S units to
put into system are 400 MW, 800 MW, 1200 MW,
1600 MW and 2000 MW. The operation mode of
each P-S unit will use its full capacity both for pump-
ing and generation.

In Fig. 6, G5, G8 and G9 are wind farms, of
which the maximum outputs of the wind generators
are 1.5 MW. G1, G7 and G15 are conventional hy-
dro stations and G10 is P-S station with a capacity of
1200 MW, the parameters of which are shown in Ta-
ble 1 where, respectively, Vmax and Vmin are the max-
imum and minimum reservoir volumes, Qmax and
Qmin represent the maximum and minimum turbine
flows, while Ymax and Ymin refer to the highest and
lowest heads for the stations. Pmax is the maximum
output and η is the efficiency of the unit.

Table 1: Parameters of hydro and P-S stations

Param-
eters

Hydro1
(G1)

Hydro2
(G15)

Hydro3
(G7)

P-S
(G10)

Vmax,
108m3

17 30 10 0.12

Vmin,
108m3

7 15 8 0.1

Pmax,
MW

100 600 300 1200

Qmax,
m3/s

240 1200 1200 350

Qmin,
m3/s

40 50 40 0

Ymax,
m

60 60 30 445

Ymin, m 50 50 25 405
η 0.9 0.95 0.95 0.75

Table 2: Parameters of thermal power plants

PN ,
MW

Num. Ramp
rate,

MW/min

Pmin,
%

CC,
g/kWh

S S ,
t/time

600 8 12 55 310 150
300 16 6 57 330 60
200 20 4 60 350 35
100 14 2 65 390 17

The others are thermal power plants, the main pa-
rameters of which are listed in Table 2, where PN

represents the rated output of a unit, Pmin is the ra-
tio of the minimum output to the rated output of the
generator, CC is the average coal consumption of the
unit, while S S refers to the coal consumption per sin-
gle start/stop for the unit.

As the dynamic benefits of a P-S station are hard
to calculate accurately, we have selected a few repre-
sentative indices in order to evaluate the P-S capacity,
such as the effective coefficient of its substitution for
thermal power capacity, the system coal consump-
tion, the amount of coal saved, the peak-regulation
proportion and the LOLP, which are shown in Ta-
ble 3. Where CT is the coefficient of the equivalent
alternative thermal capacity, S C is the coal saved, FC

refers to the system annual coal consumption and RG
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Table 3: The value of each index under various plans

Plan P-S,
MW

CT FC ,
104t

S C ,
104t

RG,
%

LOLP,
h/y

1 400 1.1 3029.38 29.62 34 6
2 800 1.0775 3012.35 47.9 38 5
3 1200 1.0617 3011.02 48.64 42 5
4 1600 1.0281 3014.98 45.26 46 5.5
5 2000 1.013 3019.65 40.54 50 8

refers to the peak-regulation proportion [22].
The standardized evaluation matrix of indicators is

as follows:

di j =


1.0000 0.9939 0.6090 0.68 0.833
0.9795 0.9996 0.9848 0.76 1.000
0.9652 1.0000 1.0000 0.84 1.000
0.9346 0.9987 0.9305 0.92 0.909
0.9209 0.9971 0.8335 1.00 0.625


The corresponding weighting for each index can

be obtained (as shown in Table 4).

Table 4: Table of weighting for each index

Weight-
ing

CT FC S C RG LOLP

H j 0.9997 0.9999 0.9909 0.9943 0.9916
d j 4.8 4.9893 4.3578 4.2 4.367
w j 0.0127 0.0042 0.3856 0.2415 0.3559

The correlation coefficient matrix R is

R =


1.0000 −0.3275 −0.3676 −0.9932 0.5133
−0.3275 1.0000 0.9986 0.3509 0.5644
−0.3676 0.9986 1.0000 0.3886 0.5283
−0.9932 0.3509 0.3886 1.0000 −0.5157
0.5133 0.5644 0.5283 −0.5157 1.0000


The eigenvalues of R can be obtained from λ =

diag (0, 0.0049, 0.0713, 2.209, 2.7148), then λ1 =

2.7148, λ2 = 2.209. The corresponding weightings
are therefore 0.3559 and 0.2415, respectively.

The variance contribution rates are ρ1 = 0.543,
ρ2 = 0.4418, ρsum = ρ1 + ρ2 = 98.48%>85%,
therefore we can take the former 2 principal com-
ponents for the original 5 indices, calculating the

result as in formula (25) and then we obtain Fi as
Fi = (0.4607, 0.5394, 0.5588, 0.5457, 0.4639).

The maximum value is 0.5588, as a result, the third
plan is the optimal solution, thus a 1200 MW capac-
ity P-S station should be installed in the power grid,
and this is consistent with results concluded in the
literature [19], because, in the actual system it was
indeed decided to install 1200 MW P-S units.

5.2. Scheduling analysis
If we assume that a 1200 MW P-S unit is put into

the power system we can carry out a scheduling anal-
ysis in order to verify the rationality of the above
results. In accordance with the principle of energy-
saving dispatching, the generating sequence of the
grid is as follows:

1. The renewable energy units which have no
adjustment ability should be dispatched first.
These units include wind generators lacking
output control, nonadjustable hydro and solar;

2. Then the hydro power units which have regula-
tion ability;

3. Combined heat and power units, the electrical
output power of which is related to the quantity
of heat produced;

4. Coal-fired generators, using a scheduling se-
quence from low to high in terms of coal con-
sumption per unit of electricity generated;

5. Oil-fired generators.
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Figure 7: Load difference between actual load and average load

The peak-shaving method is used here to dis-
patch the load using the principle of energy-
saving scheduling, which is particularly suitable for
scheduling a system dominated by thermally pro-
duced electricity. Therefore, the hydro output is used
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Figure 8: Load dispatch curve
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Figure 9: Load duration curve

to cover the peak load in order to reduce the coal con-
sumption of the system. The load difference between
actual load and average load, load dispatch and load
duration curves are shown in Figs 7 to 9, respectively.
Net losses are ignored here to simplify the calcula-
tion.
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Figure 10: Indicator comparisons with and without 1200 MW
P-S

The comparison of the different indicators is
shown in Fig. 10 when the 1200 MW P-S units are
put into operation in the example grid. It can be seen
from the figure that the reductions in CO2 emissions
are not significant. However, the start-stop times of

Table 5: Peak-valley time-of-use tariff

Load period Time, hour Price, yuan

Peak load 6~9, 17~20 1.5
Flat load 5, 10~16, 21 1.0
Valley load 0~4, 22~24 0.5

the thermal units are greatly reduced, and the reserve
coefficient increases significantly. The P-S station
can obtain 3.9×106 yuan in a typical day, which is the
maximum benefit under the peak-valley time-of-use
tariff (as listed in Table 5).

The numerical and scheduling results prove that P-
S units can have an effect on improving the economy
and security of the system, whilst also improving
the operating conditions of thermal generation units.
The equivalence between these results and our calcu-
lated outcomes indicates the value and effectiveness
of our proposed method.

6. Conclusion

Our comprehensive evaluation method combines
the entropy weighting method and PCA to deter-
mine optimum P-S capacity. The weightings of
the evaluation indices are determined by the entropy
weighting method, and the dimensions are reduced
by using PCA. This method can avoid the subjectiv-
ity of weighting assignment and therefore simplifies
the calculations to an evaluation problem containing
multiple evaluation indices.

Under the current state of the electricity market in
China, where the auxiliary services are not perfect,
some evaluation indices for P-S are difficult to assess,
however the effectiveness of P-S stations has been
widely recognized by decision makers, although the
dynamic benefits of P-S stations are hard to calculate
accurately.

As an effective evaluation method, which com-
bines entropy and PCA algorithms, our suggested
calculations are widely applicable in multi-index
comprehensive evaluations.
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