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Abstract

A logistic-regression based classifier is developed here to predict the probability of any working fluid as a
desirable candidate for ultra-low grade heat driven organic Rankine cycle. Global warming abilities, ozone
depleting potentials as well as thermodynamic properties of the working medium are used to develop this gen-
eralized classifier. As a validation of the suggested classifier, more than 80 working fluids are screened, and re-
gression analyses used to rate the most appropriate candidates. The preferable working mediums among those
evaluated based on environmental impacts are HFCs. Considering environmental issues, safety concerns, and
performance characteristics however, the preferable working fluids among those tested are HFC-245fa, fol-
lowed by HFC-134a, HFC-227ea, HFC-236ea, HFC-236fa, HC-600, HC-600a, HC-601, and HC-601a.
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1. Introduction

Low grade thermal energy sources such as solar,
geothermal, and industrial exhausts can be converted
to electricity using simple systems such as Rankine
cycles, or more complex ones such as Kalina cycles.
The more complex cycles usually offer higher effi-
ciencies, but at the cost of higher maintenance [1].
Because of the low operating temperature range,
these cycles typically operate using organic medi-
ums as working fluids. Of cycles operating on or-
ganic mediums, the most common is likely organic
Rankine cycle (ORC), which has an added benefit of
requiring only a single-stage expander, offering sim-
pler and less costly design [2]. In addition to its sim-
ple cycle form, a few other variations of the Rank-
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ine cycle have also been proposed [3, 4]. More than
50 working mediums have been considered for ther-
modynamic cycles [5–10]. More rare mediums such
as aromatic hydrocarbons [11] and mixtures of pure
substances [12–17], the use of fluids such as CO2

in the supercritical temperature range [18] have also
been proposed as alternatives. Most of these com-
parisons are nonetheless conducted for defined oper-
ating conditions while some are for thermodynamic
properties, or environmental benefits [8–10, 19–24].
A thorough review of ORCs has been conducted ad-
dressing design approaches and working medium se-
lection [20, 25, 26]. To date, there is no methodol-
ogy developed to compare working fluids across such
variables, which would be applicable under all oper-
ating conditions, for all candidate fluids, and appro-
priate for low grade thermal energy recovery. This
paper introduces a generalized screening methodol-
ogy to compare and rank any working medium for
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low grade thermal energy recovery operating on a
thermodynamic cycle, Rankine cycle in particular.

Beyond developing mathematical models which
overwhelm the literature on the subject, as an emerg-
ing technology, design of the ORC still poses some
challenges resulting from the need to efficiently cap-
ture low grade thermal energy, assure a robust de-
sign, achieve a reasonable cost reduction, etc. These
issues have attracted some technical and economic
analyses [27–29], as well as modifications to the de-
sign assemblage to improve performance or reduce
cost by for example, using gerotor and scroll ex-
panders [30], but without greatly increasing perfor-
mance. In this paper, we focus on designing a com-
prehensive tool for refrigerant screening to make the
most suitable selection, as a critical factor in improv-
ing system performance.

2. Organic Rankine Cycle

The majority of industrial waste thermal energy
is rejected at moderate and low temperatures of less
than about 260◦C. More than half of the thermal en-
ergy recovery technologies are applicable to the high
temperature range exceeding this value and up to
530◦C. For ultra-low grade thermal energy recovery,
assumed here as a range which falls below the boil-
ing temperature of water, the need for a phase change
of the working medium makes Organic Rankine Cy-
cles (ORC) more desirable than water. For a given
pressure, many organic mediums boil at significantly
lower temperatures than that of water and condense
in ambient conditions, which render them candidates
thermodynamically to recover thermal energy from
sources with lower temperature, [31]. The challenge
is the choice of organic fluid which offers the high-
est efficiency and allows the highest utilization of the
available thermal energy, and yet is acceptable based
on other criteria such as the environment.

Pure worki ng fluids such as HC-600
(CH3CH2CH2CH3) [25, 32], HFC- 245fa
(C3H3F5) [16, 33], HFC- 245ca (C3H3F5) [8, 33],
HCFC-123 (C2HF3Cl2) [8, 34], and HC-600a
as ORC working mediums have been studied
widely [10, 13]. Fluid mixtures have also been
proposed for ORC [13, 14, 35, 36] with varying
environmental, physical and thermodynamic prop-

Figure 1: Ozone Depleting Potential for Common Refrigerant
(adapted from [15])

erties. But, no comprehensive tool encompassing
the various relevant selection criteria such as Ozone
Depleting Potential (ODP), Global Warming Po-
tentials (GWP), and Thermophysical properties has
been developed for the temperature range under
consideration, prompting this current work.

3. Evaluation of Chlorofluorocarbons

Ozone Depleting and Global Warming Potentials:

ODP the relative ability of a refrigerant to de-
stroy the stratosphere [37]. Figure 1 shows the ODPs
of some common refrigerants including some future
candidates. Furthermore, GWP compares the capac-
ity of greenhouse gases to trap thermal energy in the
atmosphere. GWP is calculated based on the energy
absorbing ability of a greenhouse gas relative to that
of carbon dioxide. For most greenhouse gases this
ability declines over time. As a result, GWP is cal-
culated over a range of life times, typically 20 years,
100 years, and 500 years to assess the impact of time.
Some chlorofluorocarbons (CFCs) however have a
long atmospheric lifetime with longer-lasting impact
on GWP. Figure 2 shows the GWPs for some com-
mon refrigerants over a 100 year lifetime frame.

There is often a trade-off between system effi-
ciency, i.e., suitable thermodynamic properties of the
working medium on one side and GWP and ODP
on the other; some of the most efficient refrigerants
suitable for low grade thermal energy recovery are
undesirable from the ODP, GWP, toxicity, etc. per-
spective. Figures 1 and 2 show that CFCs have high
ODPs and GWPs. Most HCFCs have low ODPs
(0.01–0.1) and GWPs. HFCs have very low ODPs
but GWPs ranging from zero to very high. Among
these R-123, (with atmospheric lifetime of 1.3 years)
and R-152a (with atmospheric lifetime of 1.4 years)
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Figure 2: Global Warming Potential for Common Refrigerant (adapted from [15])

have both low ODP and GWP. However, R-123 is
hazardous and also flammable under pressure, and R-
152a is extremely flammable. None of the current re-
frigerants have all the desired criteria for an ideal re-
frigerant. Chemical and thermophysical analyses re-
veal conflicts in desired molecular makeup and prop-
erties which make the future discovery of a “perfect”
refrigerant unlikely [38]. It would be useful to have
a compartmentalized methodology for deliberate se-
lection of a working medium from a list of the sub-
stances available and to maximize the performance
of the working medium with the least environmental
penalty and hazard risk.

Expansion gradient of Working Fluids:

The shape of the saturated vapor line in the tem-
perature vs. entropy (T-s) diagram is a critical char-
acteristic of the working fluid in an ORC. This char-
acteristic has a great impact on the fluid applicabil-
ity, performance, and design of the power generation
system. Working fluids can be categorized as a wet
fluid with negative slope (dT/dS ), a dry fluid with
positive slope (dT/dS ), and an isentropic fluid with
nearly vertical saturation line [22]. Because dT/dS
leads to infinity for isentropic fluid, Liu et al. [26]
used the inverse of the slope, ξ (= dS/dT ), to express
the fluid type. Based on this expression, is ξ < 0, it is
a wet fluid, ξ > 0 is a dry fluid, and ξ ∼ 0 is an isen-
tropic fluid. Table 1 shows the value of ξ for some of
the working fluids.

Figure 3: ORC cycle in T-s diagram

Dry and isentropic fluids are preferred for ORCs
partly because these fluids do not condense during
expansion, which protects the turbine blades from
erosion. A negative slope of the saturated vapor line
leads to droplets at the end of expansion requiring
superheating to prevent turbine damage. In cases
where the working fluid is too dry and leaves the
turbine with substantial superheat, it may be reward-
ing to implement an internal heat exchanger. The
superheated vapor cools down in the heat exchanger
by transferring the thermal energy to the compressed
liquid before entering the boiler, which will lead to
higher cycle efficiency [22].
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Table 1: Physical Properties of Selected Chlorofluorocarbon [39, 40]

ASHRAE
Number

Saturation vapor
slope, ξ (J/Kg K2)

Critical
Point

Boiling
Ts at

1 atm

Molec.
Weight,
gr/mol

Vapor
Cp,

J/Kg K

Latent
Heat,

KJ/Kg

R-23 Wet, -6.49 25.6◦C –
48.37 bar

-82.1◦C 70 3884.02 89.69

R-32 Wet, -4.33 78.11◦C –
57.83 bar

-51.7◦C 52 2301.61 218.59

R-41 Wet, -7.20 44.25◦C –
58.7 bar

-78.2◦C 34 3384.66 270.04

R-116 Wet, -5.54 19.9◦C –
30.4 bar

-78.2◦C 138 4877.91 30.69

R-125 Wet, -1.08 66.18◦C –
36.3 bar

- 48.45◦C 120 1643.89 81.49

R-134a Wet, -0.39 101◦C –
40.6 bar

26.4◦C 102.03 1211.51 155.42

R-143a Wet, -1.49 72.73◦C –
37.64 bar

-47.14◦C 84 1913.97 124.81

R-152a Wet, -1.14 113.5◦C –
44.95 bar

-23.9◦C 66.05 1456.02 249.67

R-218 Dry, 0.45 71.89◦C –
26.8 bar

-36.4◦C 188 1244.87 58.29

R-227ea Dry, 0.76 101.74◦C
– 29.29

bar

20◦C 170.03 1013 97.14

R-236ea Dry, 0.76 139.22◦C
– 34.12

bar

6◦C 152.04 973.69 142.98

R-236fa Dry 125.55◦C
– 32 bar

-1.4◦C 152 810 160

R-245ca Dry, 0.60 174.42◦C
– 39.25

bar

28.2◦C 134.05 1011.26 188.64

R-245fa Isentropic, 0.19 154◦C –
36.4 bar

14.6◦C 134.05 980.9 177.08

R-290 Wet, -0.79 96.65◦C –
42.5 bar

-41.89◦C 44.097 2395.46 292.13

R-600 Dry, 1.03 152.05◦C
– 38 bar

-0.4◦C 58.12 1965.59 336.82

R-600a Dry, 1.03 135.05◦C
– 36.5 bar

-11.7◦C 58.12 1981.42 303.44

R-601 Dry, 1.51 196◦C –
33.6 bar

35.5◦C 72.15 1824.12 349

R-717 Wet, - 10.48 132.4◦C –
112.8 bar

-33.34◦C 17.03 3730.71 1064.38
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Density and Latent Heat:

Working fluids with high vapor density and high
latent heat are preferable for ORC, [31]. A low va-
por density leads to higher volume flow rate, and as a
result high fluid velocity, which leads to higher pres-
sure drop. Also, the size of the expander must be
increased to absorb a higher volume flow rate. This
has a significant impact on the cost of the system. A
fluid with high latent heat absorbs more energy from
the thermal energy source, therefore reduces the re-
quired flow rate and size of the equipment. Chen
et al. derived an equation to compute the enthalpy
change through the expansion (i.e. turbine work out-
put), which is [26]:

∆his = CpTIN

1 − e
L
(

1
T1
− 1

T2

)
cp

 (1)

where ∆his is enthalpy change in the expander, cp

is specific heat of the working fluid, TIN is the tur-
bine inlet temperature, e is the base of the natural
logarithm, L is the latent heat, T1 and T2 are the sat-
uration temperatures of two points on the vapor sat-
uration line and T1 > T2. Based on Eq. (1), for a
given temperature range, higher latent heat leads to
higher work output. The T-s diagram of ORC cycle
shown in Fig. 3 clearly illustrates this fact. With de-
fined temperatures, the length of the horizontal line,
which is proportional to the latent heat, defines the
area formed by the cycle which is an expression of
the work output.

Critical Point, Boiling Temperature, and Freezing
Temperature:

Thermodynamic coordinates of refrigerants such
as critical points, boiling temperature, as well as
freezing temperature can be compared based on the
operating conditions of ultra-low grade thermal en-
ergy ORC. For our purposes, thermal energy sources
with 120◦C and lower are considered ultra-low grade
thermal energy. Also, the design condensation tem-
perature is usually above 27◦C in order to reject ther-
mal energy to the ambient. As a result, working
fluids with critical point far below 27◦C such as R-
14 (CF4) are excluded for difficulty of condensa-
tion. Other important thermodynamic properties to
consider are boiling temperature, and freezing point.

Figure 4: Distribution of screened working fluids in T-ξ dia-
gram

Working fluids with a low normal boiling tempera-
ture below the cycle operating temperatures are not
acceptable. The freezing point of the fluids should
be below the lowest operating temperature in the cy-
cle. Assuming a thermal energy source temperature
of 80◦C to 120◦C and a thermal energy sink temper-
ature between 10◦C to 40◦C, it is obvious that, R-
21, R-22, R-23, R-32, R-41, R-116, R-124, R-125,
R-142b, R-143a, R-152a, R-218, R-236ea, R-236fa,
and R-290 can be eliminated because of their tem-
perature ranges.

Thermophysical criteria:

A working fluid for ORC can be selected based
on environmental impact, use-risks, thermodynamic
characteristics, and physical properties. More than
80 working fluid candidates have been screened in
this study, among which some of them have been
phased out due to environmental concerns, or will be
phased out soon. Generally CFCs which have high
ODPs and GWPs and were set to be phased out in
1996 by the Montreal protocol are not acceptable for
use as refrigerants, Figs 1 and 2. The use of HCFCs
will be banned in 2030 in the United States. There-
fore, R-21, R-22, R-123, R-124, R-141b, R-142b are
not acceptable either. Currently HFCs which do not
contain chlorine and do not damage the ozone layer
are widely in use. Most HFCs are considered to be
high GWP gases (Fig. 2) ranging from 154 for HFC-
152a to 14,800 for HFC-23.
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Table 2: Properties of Screened Working Fluids [39, 40]

ASHRAE
Number

IUPAC Chemical Name Semi-empirical
ODP

Net GWP
100-yr

R-23 Trifluoromethane 0.00 14,800
R-32 Difluoromethane 0.02
R-41 Fluoromethane 0.00 92
R-116 Hexafluoroethane 0.00 12,200
R-125 Pentafluoroethane 0.00 3,500
R-134a 1,1,1,2-Tetrafluoroethane 0.00 1,430
R-143a 1,1,1-Trifluoroethane 0.00 4,470
R-152a 1,1-Difluoroethane 0.00 124
R-218 Octafluoropropane 0.00 8,830
R-227ea 1,1,1,2,3,3,3-

Heptafluoropropane
0.00 3,220

R-236ea 1,1,1,2,3,3-Hexafluoropropane 0.00 1,370
R-236fa 1,1,1,3,3,3-Hexafluoropropane 0.00 9,810
R-245ca 1,1,2,2,3-Pentafluoropropane 0.00 693
R-245fa 1,1,1,3,3-Pentafluoropropane 0.00 1,030
R-290 Propane 0.00 3
R-600 Butane 0.00 4
R-600a Isobutane 0.00 4
R-601 Pentane 0.00
R-601a Isopentane 0.00
R-717 Ammonia 0.00 0
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Applying environmental impact as the first selec-
tion criterion limits our choice to 24 refrigerants
from the pre-screened 80 working fluids, Tab. 2.
The second criterion for the working fluid selec-
tion is thermo-physical properties of the working
medium. Assuming a thermal energy source tem-
perature range of 80◦C to 120◦C and a thermal en-
ergy sink temperature between 10◦C to 40◦C, none
of the working fluids meet all the criteria discussed
as ideal for ORC. Among the relevant thermophysi-
cal criteria, the critical temperature and the slope of
saturation vapor line are important because they sug-
gest the operating temperature range and limits of the
thermodynamic cycle [39]. Figure 4 shows the crit-
ical temperature vs. ξ distribution of the screened
working fluids.

Figure 4 suggests that the screened working fluids
can be divided into four groups:

• Group 1: R-23, R-32, R-41, R-116, R-125, and
R-143a are wet fluids with low critical tem-
peratures and they usually require superheat-
ing. Among these fluids R-23 and R-116 have
critical temperatures under 40◦C, i.e., they re-
quire low condensation temperature near ambi-
ent conditions, which makes them less suitable
for ORC. The condenser design for the rest of
the fluids should not be a problem since their
critical temperatures are above 40◦C. Thus, R-
32, R-41, R-125, and R-143a are promising can-
didates for supercritical ORC.

• Group 2: Fluids R-134a, R-218, R-227ea, R-
236ea, R-236fa, R-245ca, R-245fa, and R-290
are isentropic fluids which makes them good
candidates for ORC. Among these fluids R-
236ea, R-236fa, R-245ca, and R-245fa have
critical temperatures above 120◦C, making them
more fitting for us in ORC.

• Group 3: R-152a is a wet fluid with high crit-
ical temperature, and its use as ORC medium
requires superheating.

• Group 4: Fluids R-600, R-600a, and R-601 are
dry fluids which are good candidates for ORC
without superheating requirements.

Based on these classifications refrigerants with suit-
able thermodynamic coordinates for ORC applica-
tions are HFC-134a, HFC-227ea, HFC-236ea, HFC-
236fa, HFC-245fa, HC-600, HC-600a, HC-601, and
HC-601a. Note that HFC-245ca is dropped from the
list since it is flammable.

Next, we will use all the fluids listed in Tab. 1
and the preliminary conclusions arrived at above as
a training data set to perform regression analysis and
develop a hypothesized function which can be used
to predict the suitability of a new refrigerant used in
ORC for Ultra-Low grade thermal energy recovery.

4. Regression Analysis of Working Mediums Op-
erating on ORC

Machine learning is a scientific approach to de-
signing and developing algorithms that allow com-
puters to predict a useful output for a new case based
on the observed/training data set. A major focus
in machine learning is to automatically learn to rec-
ognize complex patterns between observed data and
make accurate prediction for a new/unseen scenario.
In machine learning, regression analysis includes dif-
ferent techniques for analyzing and modeling a re-
lationship between a dependent variable and one or
more independent variables.

Linear Regression:

Linear regression is a method to model a linear re-
lationship between a dependent variable, Y , and one
or more explanatory variable, X (e.g. x1, x2, x3, ...).
In this method, observed data are modeled using lin-
ear predictor functions. A linear predictor function is
a linear function of a set of unknown coefficient and
explanatory variables, whose values are used to pre-
dict the outcome of the dependent variable. The un-
known coefficients are estimated from the observed
data.

Classification Problem:

Classification is the problem of identifying the set
of categories to which a new observation belongs.
The categories are defined based on the training set
of the observed data whose categories are known.
The individual observations are analyzed into a set of
explanatory variables, or features. These explanatory

— 263 —



Journal of Power Technologies 93 (4) (2013) 257–270

Figure 5: Logistic function

variables or features might be real-valued, integer-
valued, or categorical. The algorithm that maps the
input data to a category is known as a classifier. A
large number of algorithms can be phrased in terms
of linear function which is called linear classifier.
Logistic Regression, Probit regression, and Support
Vector Machine are examples of such algorithms.

Logistic Regression:

Logistic Regression is a type of analysis for clas-
sification problems, which is used for predicting out-
come of a binary dependent variable based on one or
more explanatory variables. The binary dependent
variable is a type of variable that can take only two
types of outcome, e.g. “Yes” vs. “No” or “Success”
vs. “Failure”. Logistic regression attempts to model
a function that predicts probability of Yes/Success of
a given data based on the training set/observed data.

Logistic function, shown in Eq. (2) and Fig. 5, is
used in logistic regression to model how probabil-
ity of given data may be affected by one or more in-
dependent variables. Logistic function is useful be-
cause it can take an input from negative infinity to
positive infinity and convert it to an output between
0 and 1.

The logistic function is:

f (x) =
eL

eL + 1
=

1
1 + e−L , (2)

where f (x) is the risk of having “Yes” or “1” as
outcome, and the variable L is defined as

L = β0+β1x1+β2x2+β3x3+. . . +βkxk, where x1, x2,
x3,. . . , xk are independent variables, and β1, β2, β3. . .
βk are called regression coefficients of x1, x2, x3. . .
xk respectively. Each of the regression coefficients
describes the contribution size of the risk factors.

Logistic regression is based on a nonlinear func-
tion of a linear relation between the independent vari-
ables; compared to linear regression which is based
on a linear function of the independent variables.
That’s why logistic regression is considered to be
a generalized linear model. Logistic regression has
been used in this study since it is capable of describ-
ing the relationship between independent variables
and a binary dependent/response variable, expressed
as probability that takes only two values.

Data Preparation:

In this study we will use all the working fluids pre-
sented in Tab. 1 and the final results as our training
set to model a relationship between five independent
variables including Montreal protocol phase out year,
ODP, net GWP in 100 years, type of fluid, and crit-
ical temperature, and a binary independent response
with value 1 for being a good fit for low grade ORC
and 0 for the opposite; x1, x2, . . . , x5 are independent
variables. As can be seen in Tabs 1 and 2 each inde-
pendent variable has a different range of values. To
make comparison possible and to remove the rather
meaningless variation in the values of the continuous
variables, the following categories for the values of
each independent variable have been defined. These
categories have no numerical meaning and there is
no intrinsic ordering to them.

Montreal Protocol Phase out Year or x1:

Class 1: Has been phased out

Class 2: Will be phased out in 2030

Class 3: No restriction

Class 4: unknown

Ozone Depleting Potential or x2:

Class 1: Fluid with ozone depleting potential of
0.2 and more

Class 2: Fluid with ozone depleting less than 0.2

Class 3: unknown ODP
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Net GWP in 100 Year or x3:
Class 1: Net GWP less than 10

Class 2: Net GWP between 10 and 100

Class 3: Net GWP between 100 and 1000

Class 4: Net GWP between 1000 and 10000

Class 5: Net GWP more than 10000

Class 6: unknown

Type of Fluids or x4:
Class 1: Isentropic Fluids

Class 2: Dry Fluids

Class 3: Wet Fluids

Class 4: Unknown

Critical Temperature or x5:
Class 1: Critical temperature below 40◦F

(4.44◦C)

Class 2: Critical temperature between 40 and
80◦F (4.44◦C and 26.7◦C)

Class 3: Critical temperature over 80◦F (26.7◦C)

Class 4: Critical temperature over 120◦F
(48.9◦C)

Class 5: Unknown

4.1. Risk, Odds, and Log Odds
Risk is the potential that a chosen working fluid

will lead to undesirable response of 0, which means
that the fluid will not be a good choice for ORC. Risk
for each value of independent variables can be calcu-
lated with Eq. (3).

Risk =
# o f Bads + M × ρAVG

# o f Bads + # o f Goods + M
(3)

where ρAVG is the population’s average of Bad-rate
and M is the smoothing factor. In this study we set
the value of M at 50.

Odds is the ratio of the probability that a partic-
ular event will occur to the probability that it will
not occur. Odds can be calculated in terms of risk

and vice versa. For instance if the risk of an event
is “P” the odds of that event can be calculated as
P/ (1 − P). The transformation from risk to odds is
a monotonic transformation, meaning that the odds
increase as the probability increases and vice versa.
Risk ranges from 0 to 1 and odds range from 0 to
positive infinity. The transformation from odds to
log of odds is log transformation. This is another
monotonic transformation which means that as the
log odds, also called logit, increase so the odds in-
crease and vice versa. One of the reasons for trans-
forming risk to log odds is that it is usually difficult
to model data that have a restricted value like risk be-
tween 0 and 1 compared to log of odds ranging from
negative infinity to positive infinity.

Risk and log odds are used to transfer variables
with categorical values (such as class I, class II, etc.)
into variable into numerical values. The reason be-
hind this is to be able to use categorical variables for
mathematical calculations.

4.2. Logistic Regression and Log Odds
Logistic regression determines an equation that

approximates the probability of Y (e.g. being a suit-
able fluid for ORC) occurring. When a binary re-
sponse variable is modeled using logistic regression,
it is assumed that the logit (log odds) transformation
of the response variable has a linear relationship with
the independent variables. Logistic regression mod-
els the logit transformed risk as a linear relationship
with the independent variables. If Y is the binary out-
come which takes the value of 0 for failure and 1 for
success, and P is the risk of Y being 1, and x1, x2, . . . ,
x5 are independent variables, then the logistic regres-
sion of Y on x1, x2, . . . , x5 estimates coefficients of
β0, β1, β3 . . . β5 via maximum likelihood estimation.

L = Logit (P) = Log (odds) = Ln
(

P
1−P

)
=

β0 + β1x1 + . . . + β5x5
(4)

For a better understanding of this analysis—
justification as to why log odds are used in this
process—it can be assumed that there is only one
independent variable, x1. Therefore Eq. (4) can be
simplified to Eq. (5).

L = Log
( P
1 − P

)
= β0 + β1x1 (5)
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Therefore logit, L, has a linear relationship to x1.
Let us take the log out of both sides of Eq. (5):

P
1 − P

= eβ0+β1 x1

P =
eβ0+β1 x1

1 + eβ0+β1 x1

This equation is the same as Eq. (2). If log odds
are linearly related to x1, then the relation between P
and x1 is not linear, and has the form of an S-shaped
curve shown in Fig. 5. The variable coefficients β0,
β1, β2, . . . , β5 can be calculated through the max-
imum likelihood function of a binary output. The
maximum likelihood function of a binomial model
can be defined as

LD (P) =
∏

i

[
PYi × (1 − P)1−Yi

]
, (6)

where LD is the likelihood of P and Y is the de-
pendent variable, Y = 1 for success and Y = 0 for
failure We need to find a P (i.e. β0, β1, β2,. . . , β5)
that maximizes the likelihood function. It is equiva-
lent to maximizing the logarithm of this function:

log [LD (P)] = log
(∏

i

[
PYi × (1 − P)1−Yi

])
=

∑
i

[
log

(
PYi × (1 − P)1−Yi

)]
=

∑
i

[
log

(
PYi

)
+ log (1 − P)1−Yi

]
Therefore β0, β1, β2, . . . , β5 can be computed by

maximizing Eq. (7).

log
[
L ( f (x))

]
=∑

i
[
Yi × log f (x) + (1 − Yi) × log (1 − f (x))

] (7)

5. Numerical Results

Tables 3 and 4 show the calculated risk, and log
of odds for each value of independent variables in
the proposed training set for some selected working
fluids. The calculated values of log odds have been
used in Microsoft Excel to compute the coefficients
β0, β1, β2, . . . , β5 using Eq. (7). The following values
are the final computational results:
β0 = 0.99999485
β1 = −0.99999923

Table 5: Selected Model Output of the Proposed Training Set

Gas ID Model Output Y

R-23 0.00139215 0
R-32 0.00520977 0
R-32 0.00520977 0
R-116 0.00000337 0
R-125 0.01319707 0
R-134a 0.29007208 1
R-143a 0.01319707 0
R-152a 0.02600327 0
R-218 0.00067314 0
R-227ea 0.89498583 1
R-236ea 0.89498583 1
R-236fa 0.89498583 1
R-245ca 0.35768201 0
R-245fa 0.46032646 1
R-290 0.36327627 0
R-600 0.92248319 1
R-600a 0.92248319 1
R-601 0.76944694 1
R-601a 0.76944694 1
R-717 0.36327627 0

β2 = 0.93592602
β3 = −0.49600496
β4 = −0.94496621
β5 = −0.59583844
Thus, Eq. (4) can be shown as

L = 0.99999485 − 0.99999923 x1 + 0.93592602 x2

−0.49600496 x3 − 0.94496621 x4 − 0.59583844 x5

Hence, f (x) can be calculated as (Eq. 8):

f (x) = 1÷(
1 + e−(0.99999485−0.99999923x1+0.93592602x2−0.49600496x3−0.94496621x4−0.59583844x5)

)
(8)

Now f (x) for each gas can be calculated by in-
putting the values of each independent variable into
Eq. (8). The calculated results are shown in Tab. 5.

Looking at the values of the model output shown
in Tab. 5, it can be concluded that 0.45 is the marginal
value. All gases with f (x) < 0.45 have the Y value of
0 which means they are not good fits for ORC (except
for R-134a which has f (x) < 0.45 while its Y value
is 1). All gases with f (x) > 0.45 have the Y value of
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Table 3: Risk Values of the Proposed Training Set, selected results

Gas ID x1 x2 x3 x4 x5 Y

R-23 0.528221 0.8126616 0.997848 0.916448 0.997323 0
R-32 0.528221 0.8126616 0.952233 0.916448 0.998201 0
R-41 0.528221 0.8126616 0.994774 0.916448 0.998201 0
R-116 0.997848 0.8126616 0.997848 0.916448 0.997323 0
R-125 0.528221 0.8126616 0.750698 0.916448 0.998201 0
R-134a 0.528221 0.8126616 0.750698 0.916448 0.640997 1
R-143a 0.528221 0.8126616 0.750698 0.916448 0.998201 0
R-152a 0.528221 0.8126616 0.998645 0.916448 0.640997 0
R-218 0.997848 0.8126616 0.750698 0.305844 0.998201 0
R-227ea 0.528221 0.8126616 0.750698 0.305844 0.640997 1
R-236ea 0.528221 0.8126616 0.750698 0.305844 0.640997 1
R-236fa 0.528221 0.8126616 0.750698 0.305844 0.640997 1
R-245ca 0.528221 0.8126616 0.998645 0.305844 0.640997 0
R-245fa 0.528221 0.8126616 0.750698 0.834266 0.640997 1
R-290 0.528221 0.8126616 0.605691 0.916448 0.640997 0
R-600 0.528221 0.8126616 0.605691 0.305844 0.640997 1
R-600a 0.528221 0.8126616 0.605691 0.305844 0.640997 1
R-601 0.528221 0.8126616 0.952233 0.305844 0.640997 1
R-601a 0.528221 0.8126616 0.952233 0.305844 0.640997 1
R-717 0.528221 0.8126616 0.605691 0.916448 0.640997 0

Table 6: Order ranking of the proposed training set, sample
results

Rank ID GAS ID Model Output

1 R-600 0.92248319
2 R-600a 0.92248319
3 R-227ea 0.89498583
4 R-236ea 0.89498583
5 R-236fa 0.89498583
6 R-601 0.76944694
7 R-601a 0.76944694
8 R-245fa 0.46032646
9 R-290 0.36327627
10 R-717 0.36327627

1 which means they are suitable working fluids for
ORC. Moreover, the value of f (x), which represents
the probability of being a good candidate for ORC,
provides a measure for rank ordering the fluids under
study. The higher the value of f (x), the higher the
fluid’s rank is in the overall screening. Based on this,
the ranking of the screened working fluids and their

scores are represented in Tab. 6.

6. Conclusion

Logistic regression is a useful tool to find a classi-
fier (e.g. Eq. 8) that distinguishes the desirable work-
ing fluids for ORC from the undesirable ones with
very high precision (1 error in 82 instances). Any
new gas outside of the proposed training set should
first be classified based on different categories de-
fined for each independent variable. Then risk and
log odds can be calculated for each independent vari-
able. Then f (x) can be calculated using the risk and
odd logs. For a value of f (x) > 0.45 the value of re-
sponse is equal to 1 which means that working fluid
is a proper candidate for ORC. The methodology
suggests that the top ten working mediums for ultra-
low grade thermal energy recovery from among the
tested cases are R-600, R-600a, R-227ea, R-236ea,
R-236fa, R-601, R-601a, R-245fa, R-290, and R-
717.
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Table 4: Log odds Values of the Proposed Training Set

Gas ID x1 x2 x3 x4 x5 Y

R-23 0.113 1.4674 6.13917 2.39504 5.92039 0
R-32 0.113 1.4674 2.99248 2.39504 6.31857 0
R-41 0.113 1.4674 5.24878 2.39504 6.31857 0
R-116 6.13917 1.4674 6.13917 2.39504 5.92039 0
R-125 0.113 1.4674 1.10234 2.39504 6.31857 0
R-134a 0.113 1.4674 1.10234 2.39504 0.57969 1
R-143a 0.113 1.4674 1.10234 2.39504 6.31857 0
R-152a 0.113 1.4674 6.60259 2.39504 0.57969 0
R-218 6.13917 1.4674 1.10234 -0.8196 6.31857 0
R-227ea 0.113 1.4674 1.10234 -0.8196 0.57969 1
R-236ea 0.113 1.4674 1.10234 -0.8196 0.57969 1
R-236fa 0.113 1.4674 1.10234 -0.8196 0.57969 1
R-245ca 0.113 1.4674 6.60259 -0.8196 0.57969 0
R-245fa 0.113 1.4674 1.10234 1.61617 0.57969 1
R-290 0.113 1.4674 0.42924 2.39504 0.57969 0
R-600 0.113 1.4674 0.42924 -0.8196 0.57969 1
R-600a 0.113 1.4674 0.42924 -0.8196 0.57969 1
R-601 0.113 1.4674 2.99248 -0.8196 0.57969 1
R-601a 0.113 1.4674 2.99248 -0.8196 0.57969 1
R-717 0.113 1.4674 0.42924 2.39504 0.57969 0
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Nomenclature

β1, β2, β3. . . βk Regression coefficients of x1, x2, x3. . .
xk∏

i Multiplication symbol of variable i

ρ Population average of bad-rate

ξ Inverse slope of dT/dS

AVG Average

cp Specific Heat

e The base of natural logarithm

f (x) Logistic function
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h Enthalpy

in Inlet

is Isentropic

L Latent heat

L Sum of β0, β1x1, β2x2, β3x3, . . . , βkxk

LD Likelihood of P and Y

M Smoothing factor

P The risk of an event

S Entropy

T Temperature

x1, x2, x3,. . . , xk Independent variables

Y Dependent variable

CFC Chlorofluorocarbons

GWP Global Warming Potential

HFC Hydrofluorocarbon

ODP Ozone Depleting Potential

ORC Organic Rankine Cycle

SVL Saturation vapor line
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