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Abstract

Thermal conductivity of heterogeneous materials is a complex function of not only properties and amounts
of constituents, but also of many structural factors. Experimental measurements are time-consuming pro-
cesses, so it is justifiable to replace laboratory tests with prediction methods. An attempt to predict thermal
conductivity of granular media using an Artificial Neural Network (ANN) model is undertaken in the paper.
It was assumed that it is a function of a ratio of thermal conductivities of the constituents, medium porosity
as well as coordination number describing the mean number of the nearest neighbours to each grain. Several
configurations of the ANNs were tested while developing the optimal model. As a measure of prediction ac-
curacy, the coefficient of linear regression and the mean squared error were used. The optimal model of ANN
was found to consist of three hidden layers with eight neurons in each layer for both types of media. Some
problems associated with application of ANN were discussed. The predicted values of thermal conductivity
obtained with ANN were compared with values calculated from an analytical formula. It was found that the
ANN predictions show identical trends and similar values to the analytical formula for all factors affecting
thermal conductivities of the granular media. Since analytical formula work is suitable only for a narrow
range of properties of granular materials, it is recommended to use ANN as a supplement for a wider range.
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1. Introduction

Granular media are types of heterogeneous materi-
als which appear in many engineering aspects. Gran-
ular media are here understood as heterogeneous ma-
terials made of loose grains that can touch fluids
that fill the empty spaces between grains [1]. Sand,
soil, agricultural products and thermal insulations
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serve as examples. Many other such materials are
widely used in civil engineering, metallurgy, agri-
culture or the chemical industry. The thermal prop-
erties of such materials are very important in every
task whenever heat transfer processes are considered.
Thermal conductivity of heterogeneous materials is
considered to be an effective, macroscopic value.
This thermal property depends not only on thermal
properties of constituents, their volume fractions and
their microscopic properties but also on the way the
constituents are distributed in the material. There-
fore, heterogeneous materials made of the same con-
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stituents and in the same proportions usually have
different thermal conductivity values. Experimental
determination of thermal properties is very expen-
sive, tedious and time-consuming, thus noting the de-
pendence of thermal conductivity on the microstruc-
ture, predictions methods are of great interest. Two
groups of prediction methods can be found in the
literature. The first group assumes a simplified mi-
crostructure of the heterogeneous material with the
most characteristic features of the original material
retained [2, 3]. The simplified geometry is subse-
quently used to predict thermal conductivity of these
materials using either analytical or numerical tech-
niques. The second group of methods is based on
an approximation of experimental results. Here too
the main factors affecting thermal conductivity of the
particular heterogeneous material should be selected
and a relationship between thermal conductivity and
these factors is sought to obtain the best fit with the
experimental data. This group of methods encom-
passes predictions based on the Artificial Neural Net-
work (ANN).

A review of the literature revealed that the ANN
has been used to date for predicting the thermal con-
ductivity of such heterogeneous materials as food,
textiles and rocks [4–9]. Fayala [4] used ANN to pre-
dict the thermal conductivity of a knitting structure
as a function of porosity, air permeability, yarn con-
ductivity and weight per unit area. A suitable ANN
was used to predict the thermal conductivity of pis-
tachio [10]. ANN modelling has been successfully
applied to the prediction of thermal conductivity of
fruits and vegetables [11] and bakery products [6].
Finally the ANN was used to predict the thermal con-
ductivity of sedimentary rocks from a set of geophys-
ical well logs [12, 13]. The review showed that no
considerable effort was directed toward prediction of
thermal conductivity of granular materials. There-
fore, this task was undertaken in the present paper.

Heat transfer in granular media is a complex phe-
nomenon with many heat transfer modes involved si-
multaneously. Heat conduction occurs in the grains
and gas-filled pores (also water-filled pores, but in
this paper only dry granular media was discussed).
Heat is also directly transferred through points of
contact between adjacent grains. Moreover, it may
also be conducted through a fluid filling the space in

surface roughness zones of the contact area between
particles. The heat flow lines are here mainly con-
stricted to the contact spots due to the higher con-
ductivity of grains than of the gas filling the pores.
In fluid filled pores convection can be present if the
pores are large enough. If the gas in the pores is
transparent then radiation heat transfer can also arise
(appearing by increased effective thermal conductiv-
ity). The effective thermal conductivity of dry gran-
ular media therefore depends on:

• thermal conductivity of medium components

• volume fraction of each component

• way of distribution of particles (configuration),
size of contact area between particles and their
diameter

• pressure of fluid phase

• surface roughness of particles affecting contact
resistance between particles

• active external loads affecting the contact area

• radiative properties of particle surface

• temperature level

As the list of factors affecting thermal conductivity
of dry granular media is a long one, finding the uni-
versal correlation seems difficult. However if a large
enough set of experimental data exists, the ANN ap-
proach may prove very efficient.

2. Neural network for dry granular media

An artificial neural network is an algorithm math-
ematically modelling the learning process from ex-
amples through iteration, without requiring a prior
knowledge of the relationships between process pa-
rameters [14]. It is, therefore, based on concepts in-
herent in the learning processes of brains [15]. Neu-
ral network modelling is becoming an interesting and
effective method in the estimation and prediction of
thermal properties. Major advantages of the ANN
are efficient management of uncertainties, noisy data
and highly non-linear relationships in data [16]. The
process of developing a neural network model in-
volves:
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• generation of (or compilation of available) ex-
perimental data on thermal properties and form-
ing a database. The database should also con-
tain all available information about properties of
constituents, their way of distribution and other
factors listed above that affect thermal proper-
ties,

• training of a neutral network,

• finding neural network architecture to enable se-
lection of an optimal configuration,

• validation of the optimal ANN model with a
data set which was not used in training.

Many experimental data on thermal conductivity of
heterogeneous media presented in the literature did
not include details on material characteristics (e.g.,
thermal properties of constituents, full characteris-
tics of their microstructure). Therefore, selection and
compilation of the respective data which can be used
for the ANN is a very complicated process. In the
present paper the experimental data for dry granular
materials were taken only from the paper by Crane
and Vachon [12], because the provided data set was
sufficient. They gathered and verified copious data
taken from literature on the thermal conductivity of
this type of material. Their paper was used to form
a database suitable for ANN training. As many fac-
tors affect the thermal conductivity of granular ma-
terials, the major difficulty in creating a prediction
model for these materials was making a wise choice
of factors that influence it significantly and disre-
garding those whose impact on thermal conductivity
can be ignored. Before creating the ANN model for
dry, granular media some simplifications were made,
namely that the medium was two-component with
grains distributed in a fluid, all grains had the same,
spherical shape of equal diameter and did not over-
lap. Thus it was assumed that the general relation-
ship between effective thermal conductivity takes the
following form:

ke f /k f = f
(
ε, ln

(
ks/k f

)
,Nc

)
(1)

with ks thermal conductivity of discontinuous
phase (solid grains), k f thermal conductivity of the
continuous phase filling the pores, ε porosity and Nc

Table 1: Summary of ANN tested architecture effects for dry
granular materials

Number of
hidden
layers

Number of
neurons on each

hidden layer

MS E,
10−3

R

2 4 0.185 0.58
2 6 0.773 0.74
2 8 0.191 0.68
2 10 0.389 0.72
2 12 0.827 0.61
3 2 0.855 0.45
3 4 0.732 0.32
3 6 0.269 0.77
3 8 0.621 0.89
4 2 0.868 0.82

– the mean coordination number of grains being the
input parameters. The mean coordination number is
in general an independent element of the microstruc-
ture description, but some attempts have been made
to correlate it to the porosity of the medium and to
show this relationship in an analytical form. One of
the formulae which depict this relation is known as
Jeremiejev’s formula:

Nc =
2 + ε +

√
(1 − ε) (9 − ε)
2ε

(2)

Comparison of this formula with experimental
data was carried out in [6]. Using the mean coordi-
nation number as an independent variable in eq. (1)
helped the ANN to find a more accurate approxima-
tion of the relationship between the effective ther-
mal conductivity and porosity of the material. This
smoothed the progress of learning by the network,
because the additional, known coupling between in-
put parameters made it simpler for the ANN to find
its optimal configuration [17, 18]. Application of the
natural logarithm of the thermal conductivity ratio of
material constituents instead of simply the respective
ratio allowed one to decrease the scope of variation
in this input variable and helped in predictions.

For dry granular materials several neural networks
models with different structures were developed.
Their input layer consisted of three neurons which
corresponded to: logarithm of continuous to dis-
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continuous thermal conductivity ratio of the con-
stituents, porosity and the mean coordination num-
ber. The number of hidden layers was varied between
2 and 4 with an increment of 1, while the number
of neurons within each hidden layer was varied be-
tween 2 and 8 with an increment of 2 – see Table 1.
This resulted in a total of 12 networks. The authors’
concept was that if the number of inputs is odd then
the number of neurons should be even to better blur
responsibility in the ANN between layers and neu-
rons and to make the network resistant to fault. The
subsequently mentioned ANN models were trained
for 200 epochs (increasing the number of training
epochs to almost 1000 showed that the ANN start
to memorize instead of learn) using approximately
70% of the given thermal conductivity data [12]. All
of them were fed-forward and the back-propagation
algorithm was utilized in the learning process [5].
The back-propagation algorithm uses the supervised
learning technique, where the network weights and
biases are initialized randomly at the beginning of
the training phase (which leaves room for further
improvement [19]). As the activation function, the
hyperbolic tangent function was used for all of the
hidden layers. This structure enables the network to
achieve better results in less time. The output layer
had one neuron representing the ratio of the effec-
tive thermal conductivity of the granular medium to
the fluid thermal conductivity. For a given set of in-
puts to the network, the response of the output layer
was calculated and compared with the correspond-
ing desired output response. Design and training
of the networks was carried out using the MatLab
programming environment 7.10.0 (version R2010a)
with Neural Networks Toolbox.

Selection of the optimal ANN configuration was
carried out by determination of the hidden neuron
number. When the neural network had too few hid-
den neurons, the model complexity was not sufficient
to extract the deterministic relationship between the
input variables and the outputs. On the other hand, a
neural network with excessive hidden neurons could
precisely adjust the training data and fit the noise
present in the data, but gave the ANN predictions
deprived of physical connotation. Therefore, its per-
formance depended largely on the particular training
set.

Figure 1: Illustration of ANN training effects for dry granular
materials built from 3 hidden layers with 8 neurons in each layer

Two parameters were used to compare network
usefulness in prediction of thermal conductivity after
training. The first one was the Mean Squared Error
(MS E). It is defined as the arithmetic mean of the
squared differences between outcome (predicted ef-
fective thermal conductivity – index P) and the ex-
pected values (experimental effective thermal con-
ductivity – index E).

MS E =
1

2n

n∑
i=1

m∑
k=0

((
ke f

k f

)
E

−

(
ke f

k f

)
P

)2

(3)

The smaller the value of this parameter the more
accurate the network is in predicting the effective
thermal conductivity of the granular medium. The
second chosen parameter was R which describes the
linear regression line between the predicted values
from the ANN model. When the parameter R is equal
to 1, this means that the accurate relationship is ob-
tained. Similarly, when it is close to zero this denotes
that no clear relationship was obtained. This parame-
ter can also be understood as the tangent of the linear
function that approximates the correlation between
the outcome and expected values.

It was found out that the best ANN architecture for
predicting the effective thermal conductivity of dry
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granular materials was built from three hidden layers
with eight neurons in each layer – Table 1. Training
and selection of the optimal ANN make it possible
to obtain a list of weights, describing the connec-
tions between neurons. That list can be applied in a
spreadsheet to obtain a very accurate tool for predict-
ing the thermal conductivity of granular materials.

The rest of the experimental data set of ther-
mal conductivity (circa 30% per cent of the whole
database values) was used for validation of the cho-
sen network model. Fig. 1 presents a graph of con-
vergence. It shows how close these network re-
sponses were to the expected values. The more ex-
perimental the data in Fig. 1, the closer to the solid
line, the more predictive the ANN model is. Al-
though it may seem that there is a lot of scattering
in the data set, the value of MSE and parameter R
suggest that ANN performs well.

3. Analytical formula to predict thermal conduc-
tivity

Several analytical formulae were proposed in the
past to predict the effective thermal conductivity of
heterogeneous materials consisting of spherical in-
clusions distributed in the matrix. They may roughly
be divided into three groups. The first group contains
exact formulae for regular or random arrangement of
spheres, which are valid either for a small fraction
of inclusions or when the inclusions are not touch-
ing, i.e., for the so-called “well-separated” case. The
second group is formed by formulae in which inclu-
sions are ordered in space and touching but the as-
sumed or calculated temperature distribution in the
medium used for prediction is approximate. In the
last, third group the spherical inclusions appear in a
regular arrangement, but they may be close to each
other. The prediction of temperature distribution can
essentially be achieved to any degree of accuracy, but
major problems appear for touching and highly con-
ductive inclusions. A different formula for random
and touching spherical inclusions was proposed by
Furmanski et al. [20]. The formula is derived from
the general expression linking the mean, statistically
averaged heat flux in the medium with the heat flux
distribution on the part of inclusion surface close to
the neighbour inclusion:

Figure 2: Ratio of effective thermal conductivity to conductivity
of continuous phase versus porosity (ε): � – ANN predictions,
♦ – from eq. (6)

− {q} = ke f · ∇ {T } = k f∇ {T }

−
(ks−k f )

ks
ñsNc

{´
Ak

(q · n) (r · nk) dA nk

}∗ (4)

where ñs is the inclusions density, i.e., number
of inclusions per unit volume of the medium; nk –
unit vector along the line joining two neighbour in-
clusions while n is the unit vector normal to the in-
clusion surface. The statistical averaging {}∗ is car-
ried out over all possible location of inclusions in
the medium when location of the considered “se-
lected” inclusion is fixed. In order to obtain formula
for the effective thermal conductivity of the granu-
lar medium the heat flux distribution on part Ak of
the surface of this inclusion should be known – see
eq. (4).
The solid grains usually have greater thermal con-
ductivity than the surrounding fluid and therefore the
heat flow lines are concentrated in the place where
the inclusions surface is the closest.
An approximate formula for the sought heat flux on
the inclusion surface may be found by assuming uni-
directional heat flow between two neighboring inclu-
sions according to the method presented in [20]. This
allows the following formula to be written for the ef-
fective thermal conductivity of the granular medium:

ke f

k f
= 1 +

(σs − 1) (1 − ε) NcDc

σs
[
3Ncη − 2 (Nc − 2) − Ncη3] (5)

where the symbol η denotes consolidation factor
describing a degree of particle merging [6]. For no
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Figure 3: Ratio of effective thermal conductivity to conductivity
of continuous phase versus ratio of conductivities of discontin-
uous and continuous phase (ε = 0.4 ks/k f < 10): � – ANN
predictions, ♦ – from eq. (6)

merging of particle, i.e., η = 1, the formula can be
simplified to:

ke f

k f
= 1 +

(σs − 1) (1 − ε) NcDc

4σs
(6)

where:

σs =
ks

k f
, Cc =

σs

(1 − σs)
,

Dc = 2Cc ln

 Cc + 1
Cc + 1 − 2

Nc

 .
4. Results

The effective thermal conductivity of the heteroge-
neous medium should satisfy some physical condi-
tions. First of all for the same values of thermal
conductivity of constituents the ratio we have to deal
with a homogeneous medium, i.e., ke f /k f = 1while
for σs > 1 the effective thermal conductivity should
be smaller than the thermal conductivity of solid
grains, i.e., for ke f /k f < σs. As the artificial neural
network does not know anything about these physical
limitations, if the experimental data set is not dense
enough close to ks/k f = σs = 1 it can show wrong
predictions in the region. In order to better adjust to
the available data, the set was additionally split into
subsets corresponding to ks/k f = σs < 10 – Fig. 3
and ks/k f = σs > 10 – Fig. 4, respectively.

Figure 4: Ratio of effective thermal conductivity to conductivity
of continuous phase versus ratio of conductivities of discontin-
uous and continuous phase (ε = 0.4 ks/k f > 10): � – ANN
predictions, ♦ – from eq. (6)

Figure 5: Ratio of effective thermal conductivity to conductiv-
ity of discontinuous phase versus mean coordination number of
grains (ks/k f = 10): � – ANN predictions, ♦ – from eq. (6)

The effective thermal conductivity increases
alongside the increase in the ratio of the thermal con-
ductivity of grains to the thermal conductivity of the
fluid. For ks/k f > 10 the ANN results are more diver-
gent from the analytical formula than for ks/k f < 10–
see Fig. 3 and 4.
Fig. 5 shows variation of the effective thermal con-
ductivity with the coordination number. For a two-
phase composite with regularly arranged spherical
inclusions the coordination number is independent of
the inclusion volume fraction and the effective ther-
mal conductivity is greater if the value is lower. For
granular material with touching grains the reverse is
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true, as can be observed in Fig. 5. Moreover, for
approximately for the ANN predictions give higher
values for the effective thermal conductivity than the
values following from equation (6).

5. Conclusions

Predicting the thermal conductivity of heterogeneous
materials is difficult primarily due to the many, com-
plex structural factors affecting its value and the dif-
ferent properties of their constituents. The main ob-
jective of this paper is to verify how the ANN copes
with this task in the case of dry granular materials.
Once trained and optimized, the ANN can serve as
a complete tool for finding correlations between var-
ious factors of the material and its thermal conduc-
tivity. However, some problems can arise with find-
ing the proper correlation due to the ANN not ad-
justing to the physical limitations imposed on the ef-
fective thermal conductivity. The ANN predictions
need a sufficiently dense experimental data set sup-
plemented with information on properties and the
manner of distribution of their constituent parts. Any
additional correlations between factors affecting ef-
fective thermal conductivity, e.g., between the mean
coordination number and porosity, can contribute to
better accuracy of the ANN approximation. The pre-
dicted values of thermal conductivity obtained with
the ANN were compared with values calculated from
an analytical formula proposed earlier in the litera-
ture for granular media. It was found that the ANN
predictions and results following from the analytical
formula are qualitatively consistent and show similar
values for all factors influencing thermal conductivi-
ties of the granular media.

The main advantage of the ANN model is that it
may be used to provide an excellent tool for predic-
tion of thermal properties, regardless of the number
of factors.
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