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Jinhua Zhang ∗, Bo Gu †, Hang Meng ‡, Chentao Fu §, Xueling Zhu ¶

Abstract

With the rapid development of new energy power generation,

large-scale wind power generation has been integrated into

power grids. However, the fluctuation and discontinuity of

wind power pose challenges to the safe and reliable operation of

power systems. Therefore, constructing a reasonable dispatch-

ing method to manage the uncertainty of wind power output

has become an important topic and this study was structured

with this precise aim in mind. An ellipsoidal robust set of wind

power outputs was initially constructed in accordance with the

predicted value and predicted error of wind power. Second, a

power system optimization dispatch model of automatic gener-

ation control (AGC) was established on the basis of the robust

set. This model aimed to minimize the cost of power generation

and maximize the use of wind power according to the following

constraint conditions: power system power balance, upper and

lower limit of wind and thermal power unit outputs, climbing

power, and spinning reserve. Finally, the internal point method

was employed to solve the example. Results show that, on the

premise of safe operation, the total operating cost of the robust

optimization dispatch method is decreased by 8.64% compared

with that of the traditional dispatch method, and economic ef-

ficiency is improved. Robust optimal dispatch factors in the

uncertainty of wind power output meaning the load shedding

scenario seldom occurs, thereby enhancing operational relia-

bility. This study can be used to improve the reliability and

economics of power system operation and provide a basis for

optimizing dispatch in power systems.

Keywords: wind power, uncertainty, prediction error,
robust optimization, economics

1 Introduction

Many countries have been vigorously developing wind
energy as an alternative supply of energy. More than
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100 countries and regions have developed wind power,
which has become a considerable part of the global en-
ergy market. In the last decade, the installed capacity
of wind power has steadily risen in China, reaching
11% of the total installed capacity in 2020 [1]. How-
ever, due to the complex distribution of wind re-
sources, power load centers do not align with wind
power generation centers. The discontinuity and fluc-
tuation of wind resources [2]; [3]also pose consider-
able challenges to power systems [4]; [5]. First, wind
power generation requires no fossil energy, and the
power grids absorb as much wind power as possible;
these conditions decrease the amount of abandoned
wind and reduce the use of fossil energy in power grids.
Second, other units are needed due to fluctuations in
wind power. However, these additional units increase
start-stop costs and seriously impact operational effi-
ciency. Finally, prediction errors of wind power cause
uncertainty of power system dispatch. Overall, these
problems adversely affect the economics of dispatch
power systems with wind farms. Scholars have inten-
sively studied the optimal dispatch of power systems
with wind farms [6]; [7]. Traditional optimal dispatch-
ing methods based on deterministic modeling do not
consider the uncertainty of wind power generation,
and these methods cannot guarantee the economics
and reliability of dispatches. Therefore, there is a clear
need to construct a reasonable and reliable set of wind
power uncertainty and establish a power system op-
timization dispatching model that considers the un-
certainty of wind power [8]; [9]. To this end, the
current study established a robust optimization dis-
patch model for power systems with wind farms and
used the interior point method to solve the model.
The results were compared with those of traditional
dispatch methods to verify the effectiveness of the
proposed model in the economic operations of power
systems. This study also provides a scientific basis for
the power system optimization dispatch strategy.

2 State of art

Scholars have conducted numerous studies on the
optimal dispatch of power systems with wind farms
from the perspectives of uncertainty modeling of wind
power prediction and optimal dispatch method for
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solving uncertainty. However, an accurate probabil-
ity distribution function of wind power cannot be ob-
tained. Thus, Xie Jun [10] constructed a wind power
uncertainty set based on the uncertainty of wind
power probability distribution and produced a power
system dispatch scheme. Ye Yida [11] used a non-
parametric conditional probability prediction method
to describe the uncertainty of wind power. The con-
ditional probability distribution of wind power was ob-
tained in accordance with different confidence levels
and influencing factors, and a dispatch model of wind
power consumption was established. Based on the
opportunity constraint programming method, Zhang
Xinyi [12] established an economic dispatching model
of power systems with wind farms. Factoring in the
uncertainty of wind power output and load prediction,
the fluctuation of load and wind power output was re-
spectively satisfied by positive and negative spinning
reserves. Alismail [13] used two distributed planning
models to solve the distribution of wind farms in dif-
ferent regions.

Although these methods can achieve good results, the
probability distribution of uncertain factors of wind
power is difficult to determine in practice. Moreover,
it is time consuming to establish a model through
probability distribution and planning.

Robust optimization is widely used to solve the un-
certainty of wind power parameters [14]. In a given
parameter range, robust optimization obtains a set
of poor solutions and ensures the reliable dispatch of
power systems in the worst situations. Chen [15] es-
tablished a multi-time-scale power system robust dis-
patch framework . This framework greatly improved
the capability of power systems to handle wind power
fluctuations, but failed to consider the uncertainty of
wind power prediction. Within the context of network-
constrained generation dispatch under wind-related
uncertainty, Gonzalez Cobos [16] presented a new ro-
bust approach with precise operation characterization
of slow- and fast-acting generating units in a day-
ahead co-optimized energy and reserve market. Al-
though the dispatch of fast- and slow- generating units
was considered, the uncertainty of wind power out-
put was neglected. Methaprayoon [17] split predicted
wind farm output into two parts: reliable and uncer-
tain outputs. Reliable output of wind power was con-
sumed through unit commitment, whereas uncertain
output was consumed through the reserve unit. These
conditions enhanced the wind power consumption ca-
pacity, improved reserve capacity, and decreased the
economic efficiency of power systems. Doherty [18]
proposed a reliability criterion for setting the reserve
capacity of a large-scale wind power grid-connected
power system, but disregarded the coupling relation-
ship between reserve capacities in each period. A uni-

fied reliability index was considered in all periods, but
this index was conservative in terms of economics.

Attarha [19] proposed an adaptive robust self-dispatch
model for a wind producer paired with a compressed
air energy storage system to participate in the day-
ahead energy market. The proposed model addressed
the uncertainty regarding wind power production and
price forecast errors. However, he disregarded the
coordinated operation of traditional and new energy
units. Holttinen and Black [20]; [21] proposed an
nσ criterion considering load–wind power prediction
errors. Following linear programming theory, the un-
balanced power of the system could be compensated
when n = 3 (99.7%), but the prediction error of wind
power could not fully conform to normal distribution.
Ortega Vazquez [22] proposed a reserve capacity opti-
mization method based on the prediction error proba-
bility distribution and determined the optimal reserve
capacity for each dispatch period. The method was
compared with the n-1 criterion proposed by Holtti-
nen [20] and simulation results showed that the pro-
posed method was the most economical.

For the transmission grid, Li Ran [23] used robust op-
timization technology to control the uncertainty in-
fluence of new energy output on the power system
and effectively reduce the operating cost of the in-
terconnected system. However, this method required
frequent power adjustments on the connection line,
thereby introducing security risks into the system.
Shui Yue [24] established a two-stage distributed ro-
bust optimization dispatch model and integrated the
1- and ∞-norms to build an uncertain set of wind
power output, but the efficiency of the robust model
was low. Wang Beibei [25] established a hybrid opti-
mization dispatch model that considered the general
characteristics of wind power prediction and the ad-
vantages of robust optimization and stochastic pro-
gramming. In the dispatch process, stochastic pro-
gramming and robust optimizations were performed
by switching the prediction accuracy. The dispatch
model could obtain good optimization results, but
high requirements were imposed for the switching tim-
ing of stochastic and robust optimizations. The fore-
cast confidence interval of wind power could be used
to quantify the uncertainty of wind power output.
Thus, the dispatching center could respond to un-
certain changes in wind power and risks based on the
confidence interval.

Some of the above studies disregarded the errors and
uncertainties of wind power prediction, whereas oth-
ers used high-precision dispatch models that reduced
the efficiency of the solution. The current study used
a confidence interval with confidence probability of
95%. An uncertainty set of wind power output and an
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economic dispatch model of robust optimization were
established in accordance with the predicted expected
data and prediction errors. Finally, the simulation re-
sults of the optimal dispatch model were solved by the
interior point method and compared with those of the
traditional optimal dispatch method. The results ver-
ified the economics and robustness of the proposed
model.

The remainder of this study is organized as follows.
Section III describes the construction of uncertain
sets, establishes the optimal dispatch model for power
systems with wind farms, and provides the solution
method. Section IV uses the interior point method
to solve the robust optimal dispatch model and ana-
lyze the simulation results. Section V summarizes the
present study and draws relevant conclusions.

3 Methodology

3.1 Construction of uncertainty set

The uncertainty set describes the uncertainty of wind
power output. The construction of the wind power
uncertainty set directly influences the operating char-
acteristics of the power system and the reliability and
safety of system dispatch. The traditional uncer-
tainty set is constructed on the basis of a certain wind
power output confidence interval considering the time
smoothing and spatial clustering effects of wind power
output. However, this method is conservative and the
constructed set covers many invalid areas, thereby in-
creasing calculation time and complexity. Convex un-
certainty sets can substantially reduce the conserva-
tiveness while ensuring the accuracy of the set. Thus,
the present study considered an uncertain set con-
struction method based on prediction errors [26]; [27];
[28]; [29] and took error distribution as Gaussian dis-
tribution. The basic model is as follows:

w̃ = {we+ M w| M wTR−1 M w ≤ c}

where w̃ is the uncertainty set of wind power
output,we is the predicted value of wind power out-
put, M w is the prediction error of wind power out-
put, R−1 is the correlation matrix of wind power pre-
diction errors, and c is a constant corresponding to
certain confidence probability α.

The covariance matrix can be used to represent and
characterize the probability density of multidimen-
sional random variables. The covariance matrix of
wind power output w̃ is Σ:

w̃ = we+ M w

where the expected value of the predicted output error
is expressed as E(M w) = 0 , and the covariance
is cov(M w) = Σ . The prediction error can be further
expressed as follows:

M w = Σ1/2v

where the expected value of random vector v is 0,
and the covariance is a unit matrix. Both ends of the
above formula are multiplied with Σ1/2:

v =


v1
.
.
.
vn

 = Σ−1/2 M w = Σ−1/2


M w1

.

.

.
M wn


where n is the number of wind farms, and M wn is
the prediction error corresponding to wind farm n.

Given a Gaussian distribution of v, owing to the inde-
pendent random variables, the distribution of ‖v‖2
can be expressed as follows:

‖v‖2 = vT v =M wTΣ−1 M w = v21 + v22 + · · ·+ v2n

where ‖v‖2 obeys Chi-square distribution with a de-
gree of freedom n . The uncertainty set of the wind
farm can be further expressed as follows:

w̃ = {we+ M w| M wTΣ−1 M w ≤ Kα}

where Kα is the constant corresponding to the
chi-square cumulative distribution function under the
given confidence level α.

In this uncertain set, any two variables of M w can
represent the prediction errors of a wind farm in dif-
ferent periods or those of different power plants in the
same period. This uncertainty set is an ellipsoidal un-
certainty set, which is a convex set. Different from
the traditional uncertainty set, this convex set can
guarantee the reliability and stability by reducing the
conservativeness.

3.2 Robust dispatch model for wind
power

Based on the wind power prediction inter-
val

[
Pw, P

w]
uploaded to the dispatch center

and other prediction information, the dispatch
center calculates the planned output of each wind
farm, the planned output value P a of automatic
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generation control (AGC) units, and the planned
output value P s of non-AGC units in conventional
power plants using the latest prediction data. These
components are taken as basic power points of each
power plant and issued to the corresponding power
plants to complete the dispatching [30]; [31].

3.2.1 Variable definition

Wind turbines and conventional units are separately
defined. Uncertainty parameter variables are ex-
pressed with superscript “˜” The parameters of each
unit are set as follows.

(1) Wind farm: The set of the dispatch period of wind
power is T , the superscript set of wind farm is W , the
planned output value of wind farm k in the t period
is pwk,t , the actual output value is p̃Wk,t , the predicted

value is p̃fWk,t , and the prediction error is M wk,t.
The total planned output value of k wind farms in
the t period is wt . The total actual output value of k
wind farms in the tperiod is w̃t , k ∈W , and t ∈ T
. These variables satisfy the following relationship:

p̃wk,t = p̃fWk,t + M wk,t

wt =
∑
k∈W

pwk,t

w̃t =
∑
k∈W

p̃wk,t

According to Equations (7) and (9),

w̃t =
∑
k∈W

p̃wk,t =
∑
k∈W

(p̃fWk,t + M wk,t)

The uncertainty set represented by Equation (6) can
be rewritten as follows:

w̃ = {w̃t| M wTt Σ−1 M wt ≤ Kα}

where M wt is the matrix formed by the prediction
errors of k wind farms in the t period, namely,

M wt =


M w1,t

.

.

.
M wk,t


(2) Conventional unit: The planned output value of
non-AGC unit i in the t dispatch period is psi,t ,

where s is the subscript collection for non-AGC units
and i ∈ s.

The planned output value of AGC unit j in the t
dispatch period is paj,t , where a is the subscript
collection for non-AGC units and j ∈ a. The actual
output of the AGC unit is p̃aj,t = paj,t − αj(w̃t − wt)
, where αj is set by the operating personnel as
the deviation power bearing coefficient borne by the
AGC unit in the case of actual wind power deviation,
and αj satisfies

∑
j∈s αj = 1, αj ≥ 0 .

3.2.2 Objective Function

Robust dispatch aims to maximize the use of wind
power and minimize the cost of power generation [32]:

min
{ T∑
t=1

∑
i∈Gs

Ci,t(p
s
i,t) +

T∑
t=1

∑
j∈Ga

Cj,t(p
a
j,t)+

T∑
t=1

∑
k∈w

Φk,t
(
p̃wk,t
)}

where Ci,t
(
psi,t
)

is the power generation cost of non-

AGC unit i in the t dispatch period, Cj,t
(
paj,t
)

is the
power generation cost of AGC unit j in the t dispatch

period, and Φk,t

(
p̃wk,t

)
is the actual output deviation

penalty cost of wind farm k in the t period.

The power generation cost of the conventional unit is
expressed as follows:

Ci,t
(
psi,t
)

= ai,t
(
psi,t
)2

+ bi,tp
s
i,t + ci,t

Cj,t

(
psi,t
)

= aj,t
(
psj,t
)2

+ bj,tp
s
j,t + cj,t

where ai,t, bi,t, ci,t are the respective coefficients of
quadratic, linear, and constant terms of the quadratic
expression of the power generation cost of non-AGC
units; aj,t, bj,t, cj,tare the respective coefficients of
the quadratic, linear, and constant terms of the
quadratic expression of the power generation cost of
non-AGC units.

The wind power generation cost is based on the
penalty of the deviation between the upper limit of the
wind power prediction interval and the actual output
value.

Φk,t

(
p̃Wk,t
)

= Mk

(
p̄Wk,t − p̃Wk,t

)2
where Mk is the output deviation penalty coefficient
of wind farm k , and p̄Wk,t is the upper limit of the
prediction interval of wind farm k .
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3.2.3 Constraints

(1) Power balance constraints

sumi∈Gipsi,t +
∑
j∈Ga

paj,t +
∑
k∈W

pWk,t = Dt

where Dt is the load in the t dispatch period.

(2) Constraints on the output limitation of conven-
tional units

PSi,t ≤ psi,t ≤ P̄ si,t

P aj,t ≤ P aj,t − αj,t (w̃t − wt) ≤ P̄ aj,t

where P̄ si,t and PSi,t are the upper and lower output
limits of non-AGC unit i in the t period, respec-
tively; P̄ ai,tand P ai,t are upper and lower output
limits of AGC unit j in the t period, respectively.

(3) Climbing rate constraints of conventional units

−RsDi,t∆T ≤ psi,t − psi,t−1 ≤ RsU,t∆T

−RaDj,t∆T ≤ paj,t − paj,t−1 − αj,t (w̃t − w̃t−1 − wt + wt−1)

≤ RaUj,t∆T

where RsDi,tand RsU,t are the downward and upward
climbing rates of non-AGC unit i in the tperiod,
respectively; RaDj,t and RaUj,t are the downward and
upward climbing rates of AGC unit j in the t period,
respectively.

(4) Spinning reserve constraint

0 ≤ ra+j,t ≤ R
a
Uj,t

0 ≤ ra−j,t ≤ R
a
Dj,t

ra+j,t ≤ P̄
a
j,t − paj,t + αj,t (w̃t − wt)

ra−j,t ≤ p
t
j,t − P

a
j,t − αj,t (w̃t − wt)

∑
j∈Ga

ra+j,t ≥ R
+
t

∑
j∈Ga

ra−j,t ≥ R
−
t

where R+
t and R−t are the upward and downward

spinning reserves in the t dispatch period, respec-
tively.

(5) Wind power output constraints

PWk,t ≤ pWk,t ≤ p̄W,t

w̃t ∈ w̃

where p̄W,t and PWk,t is the upper and lower limits
of the predicted output interval, respectively.

(6) Wind power climbing constraints

P̃wk,t − P̃wk,t−1 ≤ RWUk,t∆T

∑
t∈s

RsDk,t +
∑
j∈a

RaD,t ≥ RwUk,t∆T

P̄wk,t − P̃wk,t ≥ Rwk,t∆T′

−RWDx,t − P̃wk,t ≥ Rwk,t − P̃wk,t−1

∑
i∈s

Rvik,t +
∑
j∈a

Raj,t ≥ RwDk,t∆T

P̃wk,t − P̃
w

k,t ≥ RwDk,t∆T

Equations (30)–(35) are the upward climbing con-
straints of wind power. The climbing constraints of
wind power output not only meet their own climb-
ing rate and capacity constraints, but also ensure that
conventional units have sufficient downward or upward
climbing rates and capacities to address the fluctua-

tion of wind power. P̃
w

k,t and P̃
w

k,t are the maxi-
mum and minimum possible outputs of wind farm in
the period, respectively.
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3.3 Model Solving

3.3.1 Model Solving Method

The interior point method can be used to solve the
robust optimization dispatch model of power system
with wind farms. This method can also be used to
solve inequality constraints. By constructing the inte-
rior point penalty function in the feasible region, the
original problem with inequality constraints is trans-
formed into the extreme value problem of the objec-
tive function in the feasible region. The basic principle
of this approach is as follows.

When using the interior point method to solve the
optimization of the objective function h{

min f(x)
s.t. gu(x) ≤ 0 (u = 1, 2, 3, · · · , 4)

the expression of the constructed penalty function is
as below:

ϕ
(
x, r(k)

)
= f(x)− r(k)

m∑
u=1

ln |gu(x)|

The second term in Equation (31) is the penalty term,
and r(k) is a penalty factor, which is a set of decreas-
ing positive sequences, that is:

r(0) > r(1) > r(2) > · · · > r(k) > r(k+1) > 0

lim
k→∞

rk = 0

The basic iterative solution process is shown in Figure
1.

(1) Select the initial value of the penalty factor and
allowable error to satisfy the penalty factor r(0) > 0 ,
allowable error ε > 0 , and decreasing coefficient c.

(2) Let k = 1, and select the initial point x(0) of the
variable within the feasible region of the constructed
penalty function.

(3) Construct and solve a penalty function ϕ
(
x, r(k)

)
from x(k−1) using the unconstrained method to ob-
tain the extreme point x′

(
r(k)

)
.

(4) Check whether the extreme point meets the ter-
mination condition. If the termination condition is
satisfied, then iterative calculation is stopped, and
the optimal solution of the original objective function
is x′

(
r(k)

)
; otherwise, proceed to the next step.

(5) Take r(k+1) = Cr(k) and k = k + 1 and return
to Step (3).

Start

Solve from

Select       in 

feasible region

 

End

 

Figure 1: Calculation program diagram of the interior
point method

3.3.2 Model Solving Process

With planned output value P si,t of non-AGC units,
planned output value P aj,t of AGC units, planned wind

power output PWk,t , actual output value p̃Wk,t , pre-

dicted value p̃Wk,t , and predicted error ∆w as decision
variables, the constraints can be addressed for uncer-
tainty set w̃ . The solving process is shown in Figure
2.
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Start

Substitute the given wind 
power prediction interval 
data and conforming data 

into the model

Obtain the planned output 
value of each unit and the 
actual output value and 

error of wind farm

Implement random 
sampling by setting the total 

available scene of wind 
field with N and the initial 

value is i =1 

Calculate 
adjustment costs

Calculate total 
system cost 

i>N?

i=i+1

N

Y

End
 

Figure 2: Calculation and algorithm flow chart

4 Result Analysis and Discussion

A power supply unit in a region was taken as an ex-
ample to verify the robustness and economics of the
proposed model. The results of the proposed model
were compared with those of the traditional dispatch
model to verify the robustness. The parameters of the
conventional unit are shown in Table 1, where 4, 5,
and 6 are AGC units, whereas the other units are non-
AGC units. In this example, two wind turbines with
capacities of 1500 (No. 1) and 2000 mw (No. 2) ex-
isted in the wind farm. The dispatch of each unit in
24 dispatch periods was studied. The standby release
cost of the AGC units was also set to 80 USD/MW.
The actual output deviation penalty coefficient of the
wind farm was Mk=100. The prediction and load
data were obtained from Reference [33] . The robust
dispatch model was solved by the optimized interior
point method and MATLAB 2013.

The uncertainty of wind power generation can be
solved by establishing a suitable uncertainty set and
applying this set to a robust economic dispatch
model [34]. The above-mentioned construction meth-
ods for uncertainty sets are based on predicted values
and prediction errors. These methods can construct
the uncertainty set of similar wind farms in different
periods and that of different wind farms in the same
period. The uncertainty set was constructed in this

study by different wind farms in the same period. Fig-
ure 3 shows the uncertainty sets of No. 1 wind farm
and No. 2 wind power at t = 3. Figure 4 describes the
uncertainty sets of No. 1 wind farm and No. 2 wind
power at t=1. Figure 5 shows the uncertainty sets of
Nos. 1 and 2 wind farms at t = 18. The ellipses in Fig-
ures 3, 4, and 5 assume that the power error of wind
power obeys the Gaussian distribution. The uncer-
tainty set was constructed when the probability distri-
bution covers the prediction error with the confidence
probability of 95%. The points in the figures represent
the distribution of possible scene solutions. A total
of 144 possible scene solutions were randomly taken.
The established uncertainty set, which contains the
scene solutions, has good convergence. In addition,
the dispatch model has good convexity, which can
enhance the applicability of the model. Most wind
power can be consumed in practice. Thus, the phe-
nomenon of extreme wind abandonment can be effec-
tively reduced and the safe and reliable operation of
the system can be guaranteed.

 

Figure 3: Uncertainty set of two wind farms con-
structed at t = 3

Figure 6 shows a comparison of the upward and down-
ward spinning reserve capacities of the robust and the
traditional economic dispatch models. Compared with
traditional dispatch, robust dispatch requires the sys-
tem to provide additional spinning reserve capacity to
deal with the fluctuation of wind power generation.
Consequently, the reserve release cost of robust dis-
patch is higher than that of traditional dispatch.

Table 2 shows a comparison of the simulation results
of the two dispatches. The basic operating and re-
serve costs of robust dispatch are slightly higher than
those of traditional dispatch. Thus, robust dispatch
must reserve a certain spinning reserve capacity to
handle the risks caused by the fluctuation of wind
power generation. Through robust dispatch, the out-
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Table 1: Setting of conventional unit parameters

Units Upper limit Lower limit a/ b/ c/) Upward climbing Downward climbing Whether

of power of power rate rate AGC

/MW /MW (USD/MW2h) (USD/MWh) (USD/h) /(MW/h) /(MW/h) or not

1 152 30.4 0 152 2165 120 120 0

2 152 30.4 0 152 2165 120 120 0

3 350 75 0 177 2250 420 420 0

4 591 200 0 165 2180 180 180 1

5 155 54.25 0 148 2080 180 180 1

6 155 54.25 0 148 2080 180 180 1

Table 2: Simulation result comparison between robust and traditional dispatch methods

Dispatch Basic operation cost Reserve release cost Wind curtailment penalty Load shedding cost Total cost

strategy / 106 USD / 105 USD cost/ 107 USD /USD / 107 USD

Robust dispatch 1.83 1.12 1.29 0 1.48

Traditional dispatch 1.78 0.89 1.54 25.6 1.62

 

Figure 4: Uncertainty set of two wind farms con-
structed at t = 12

 

Figure 5: Uncertainty set of two wind farms con-
structed at t = 18

put of conventional units is reasonably arranged. Si-
multaneously, the AGC unit delivers robust dispatch in
the permitted scene of wind power generation. When
the uncertainty set contains most wind power outputs,
the covered wind power output scenes need not be ad-
justed, and robust dispatch does not need a load shed-
ding operation. The load shedding cost is low as well.
The cost of robust dispatch is 1.48, which is lower
than the traditional dispatch cost of 1.62. Hence, the
cost is decreased by 8.64%. This finding indicates
that robust dispatch is better in terms of economics
than traditional dispatch. Compared with traditional
dispatch, robust dispatch fully considers the uncer-
tainty of wind power and rarely features load shed-
ding. Therefore, robust dispatch enjoys good security
and reliability.

 

Figure 6: Reserve capacity comparison between tra-
ditional and robust dispatch methods
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5 Conclusion

The large-scale integration of wind power into power
grids poses considerable challenges to the safety, re-
liability, and economics of power system operations.
In the prediction interval of wind power with certain
confidence probability, this study established an un-
certainty set with strong convexity on the basis of
wind power prediction error to handle the uncertainty
of wind power output. On this basis, this study con-
structed a robust scheduling model and verified the
robustness and economics of the dispatch model by
an example. The following conclusions may be drawn.

1. The convex uncertainty set constructed in accor-
dance with the prediction error has low conser-
vativeness while ensuring accuracy.

2. Compared with traditional dispatch, robust dis-
patch fully considers the uncertainty of wind
power. Moreover, robust dispatch uses the AGC
unit to adjust the output of the units and respond
to the fluctuation of wind power output in the
allowable scene of wind power generation. Wind
curtailment is decreased substantially, thereby re-
flecting the strength of robust dispatch.

3. The basic operating cost of robust dispatch is
similar to that of traditional dispatch. However,
the standby cost of robust dispatch is higher than
that of traditional dispatch, because it needs to
reserve standby costs to handle changes in wind
power. However, the cost of wind curtailment
in robust dispatch is much lower than in tradi-
tional dispatch. Thus, robust dispatch enjoy the
advantages of low total cost and high economic
efficiency.

Combining the simulation model and the theoreti-
cal study of optimized dispatching of power systems
with wind farms, this study proposed a robust opti-
mization dispatch method to solve the uncertainty of
wind power prediction. The proposed model is suit-
able for practical scenarios and provides a theoretical
basis for optimized dispatch of power systems with
wind farms. Therefore, multi-objective optimal dis-
patching of power systems with source load uncer-
tainty will be considered in the future, based on the
present study. Considering the coexistence of multiple
types of power sources and multiple factors, such as
environmental benefits, social benefits, reliability, and
operating constraints, a multi-objective optimized dis-
patching model will be established to further improve
the operational safety and economics of new energy
power systems.
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