Performance assessment and leakage analysis of feed water pre-heaters in natural gas–fired steam power plants

Gholamreza Ahmadi Sheikh Shabani\(^a\), Mohammad Ameri\(^a\), Omidali Akbari\(^b\), Alireza Seifi\(^b\)

\(^a\)Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran, Iran;
\(^b\)Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran

Abstract

The performance of feed water pre-heaters (FWH) at a steam power plant with a capacity of 200 MW is evaluated in this paper. The main objective of this study is to investigate the behavior of these FWHs in various cases. The effect of leakage of condensates on the condenser was also studied in detail. To do this, each FWH was studied separately and also in groups (LP, HP and both groups). While some of the results are exclusive to the studied power plant, others can be generalized to similar power plants. The results show that although LPH-1 and LPH-2 have the lowest exergy efficiency, they have the greatest effect on the efficiency of the cycle. Whereas HPH-6 and LPH-4 have the highest heat exchange (31.3 and 21.73 MW), LPH-2 and LPH-1 deliver the greatest positive effect on energy efficiency (0.81% and 0.61%). Moreover, the results show the particular importance of preventing any leakage of heater condensate. In the event of leakage along the route to the condensate of heaters, the most negative effect will be due to the HP heaters: 20 kg/s leakage in the HPHs line will cause an increase in CO\(_2\) production p.a. of roughly 10150 metric tons. Furthermore, energy efficiency and power produced will fall by 0.374% and 5.1 MW. In terms of the impact of leakages on the cooling tower, the study showed that LPH-1 and LPH-2 have the greatest effect. The effects of LP and HP FWHs on the energy efficiency of the cycle were 2.53% and 0.82%.

Keywords: Thermal power plants; Rankine cycle; Efficiency improvement; Feed water heater; Technical analysis; External leakage

1. Introduction

The issue of energy is becoming more important every day. Perhaps the environmental aspects can be considered as the most important reason for focusing on reducing energy consumption. The cost of electricity generation from renewable energy sources is currently higher than fossil fuel power plants [1]. Currently, Rankine cycle power plants have the largest share of power generation in the world [2]. These cycles are used in steam power plants (SPP) (fossil fuel types), combined cycle power plants (CCPP) and nuclear power plants [3]. Many studies have been carried out to increase the efficiency and performance of these types of power plants. Considering that power plants based on this cycle will be used for at least the next few decades (especially nuclear power plants and CCPP), research will continue with a view to increasing their efficiency. In developing countries, it is expected that at least in the next few decades, fossil fuels will be the major source of electricity production [1]. In Iran, the same trend is predicted [4]. The Rankine cycle is also used in some solar thermal power plants to convert solar energy captured in solar collectors to power. There, the solar field acts as the energy source (instead of a boiler) and the cycle may include feed water.

In order to compare SC power plants with CCPPs, it is clear that GTCC power plants enjoy higher efficiency than SC power plants. This is because of the optimal use of fuel energy in the Brayton cycle (gas turbine) and the Rankine cycle (steam part). Many studies have been conducted into converting the simple cycle of MSPP into CCPP (repowering the cycle) [5–14], evaluating various methods of repowering. Technical and economic constraints apply to repowering existing steam power plants into CCPPs.

Rankine cycle efficiency can be improved by using FWHs [3]. Although the source of FW pre-heating is extracted steam from the turbine (which could generate power in the turbine), pre-heating has a greater effect on cycle efficiency and performance. In the newest Rankine cycle power plants, up to eight FWHs are used [3].

\(^{*}\)Corresponding author

Email address: gholamreza.ahmadi@iaukhsh.ac.ir (Gholamreza Ahmadi Sheikh Shabani)
2. Literature review

Many papers study feed water pre-heaters in Rankine cycles power plants. Some papers analyzed overall cycle performance while others studied internal heat transfer processes. The effect of leakage (internal or external) on the heat exchanger is also important and a summary of papers in this regard is presented.

Varma and Srinivas [15] studied optimum pressure and flashing factor in a CHP plant in India. To increase the system’s efficiency, they used the waste heat of a cement factory to pre-heat the FW. Their results ultimately showed that waste heat recovery can be increased by reducing the temperature ratio from 0.5 to 0.25. Poursaghaghy [16] studied the effect of pressure and the percentage of steam entering the FWHs of a steam power plant. They chose the efficiency of the Rankine cycle as the objective function, while nonlinear constraints were used for optimization. Finally, calculations and optimization revealed that the optimum pressure for each FWHs diffrred slightly from the existing values.

Moghadassi et al. [17] calculated the working conditions of a heat recovery cycle with an open FWH and sought to maximize the output power of the cycle. They used a genetic algorithm for optimization and a neural network to find the thermodynamic properties of water at cyclic points. Boiler pressure was 5 MPa in the cycle studied.

Farhad et al. [18] used exergy and pinch analysis to reduce the irreversibility of FWHs at four operating power plants. The boiler pressure of these power plants was subcritical. Akolekara et al. [19] found the best reheater pressure and FWHs in a power plant. They studied boilers with pressures up to 22 MPa. Jiping et al. [20] investigated the effects of partial load of a coal-fired power plant on FWHs. Moving away from design conditions can reduce the performance of the pre-heaters. They assessed a super-critical power plant with a capacity of 660 MW and concluded that the use of an ejector pump system which uses main line steam could significantly increase the performance of the pre-heaters.

Antar and Zubair [21] studied the performance of a power plant’s FWHs. By examining all parts of a heater – including the desuperheater section, condenser and sub-cooler parts – they found that the mass flow rate of steam and heat transfer coefficient have a great influence on the performance of the heaters. By examining the heat transfer process and its change over time, they concluded that 3 years after the installation of these heaters, the heat transfer rate will decrease by 2.7%.

Xu et al. [22] studied the effect of water level (condensate) inside the FWHs on their performance. They first developed a mathematical model to estimate the parameters of the heater using dimensional parameters. A high-pressure (HP) heater from a 330 MW coal-fired power plant was used and they examined the effects of fluid level on the performance of different parts such as the drain cooler. They showed that this model can be used to predict the performance of the operating heaters to find the best performance mode.

Álvarez-Fernández et al. [23] performed thermodynamic analysis of closed FWHs of a nuclear power plant and proposed a model for thermal analysis of heaters when their input steam is in saturation mode. A method for remote evaluation of heater performance was proposed, as heaters in nuclear power stations contain radioactive materials.

Espatolero et al. [24] introduced strategies to improve efficiency while designing a network of FWHs in supercritical coal-fired power plants. Their results showed that the overall efficiency of the cycle can be increased by up to 0.7%. Moreover, a 1.3% reduction in CO₂ production was achieved.

Hossienalipour et al. [25] developed a model for assessing the effect of water level on the cooling rate of the drain cooler in vertical HP FWHs. They introduced a mathematical model for evaluating the performance of a three-part HP pre-heater. Results showed that the water level inside the heater has a great influence on its performance.

In this paper, we analyze the performance of FWHs of a steam power plant as a case study. The proposed power plant has 4 LP heaters and 3 HP heaters and an open heater (Deaerator). We first simulated the cycle using Cycle Tempo software and compare it with the design and operation results. After ensuring the validity of the results, we examined possible changes to cycle performance. To analyze these heaters, while taking into account different working conditions that occur in the power plant, we examined the effects of these changes on the overall performance of the cycle. The effect of lowering the performance of the heater and taking each heater out of service were considered. Also, due to the impact of the leakage of condensate forming in the heaters, this issue was also studied in detail. The introduction of leaked water into the condenser increases the thermal load and as a result, reduces the condensed vacuum and ultimately reduces the production power or increases the heat rate (HR) of the cycle [2]. Previous studies about the declining performance of heaters over time are presented. This applies to almost all Rankine cycle power plants [21]. This depends on the chemical composition of water and the material of the heater [26]. Furthermore, other parameters like fuel flexibility, operational flexibility and decreasing environmental undesirables (such as CO₂) are very important [27, 28], although fuel flexibility is not considered in this paper.

3. Description of the Power Plant Cycle

Montazeri Steam Power Plant (MSPP) consists of 8 units of 200 MW [29]. The main fuel of the boilers is mazout, but natural gas and diesel fuels are also used. Currently, due to limitations imposed by the Iranian Environment Organization, only natural gas is used [30].

Fig. 1 shows the main water and steam flow diagram of this power plant. In this cycle, in order to increase efficiency and maintain other relevant benefits, 7 closed FWHs and one deaerator are used. In Table 1, the thermodynamic characteristics of the various points of the cycle are presented. Some general characteristics of the cycle are presented in Table 2. A brief description is given of the process of conveying water from the condenser to the boiler as well as the
temperature range. The outlet water from the condenser at 47°C is pressurized by the first stage pumps to about 8 bar. In order to control water quality, a polishing plant is installed at this point. The water is filtered in two steps through the cationic filters and the mix-bed. The equipment requiring the low temperature FW (for cooling purposes) include: the main ejectors for producing condenser vacuum and keeping it fixed (two pieces of apparatus) and a Gland Condenser (GC). For this reason, the output water from the PP passes through this equipment. In order to compensate for the drop in pressure, the second stage pumps in this section increase the pressure of the water to about 21 bars. The outlet water from this pump(s) enters LP heater No. 1. After that, the water enters the Gland Steam Cooler (GSC). The gland steam from the turbines (HPT & IPT) is condensed in this heat exchanger. FW passes through LPHs 2, 3 and 4 upon exiting the GSC. Before entering the boiler feed pumps (BFP), FW enters the deaerator. The process of degassing is carried out in the deaerator, during the heating of the FW (max. 15 to 20°C). The purpose of degassing is also to remove some intrusive substances and insoluble oxygen from the FW. FW enters the deaerator at a temperature of 157°C. The FW enters HPHs (5, 6 and 7) after BFPs. Finally, the FW enters the steam generator at a temperature of 247°C and pressure of 172 bar.

4. Governing Equations in Thermodynamic Modeling

The first law of thermodynamics, exergy balance and law of conservation of mass are used in a control volume. The first law of thermodynamics is [31]:

$$\sum m_i(h_i + \frac{v_i^2}{2} + gz_i) + Q = \sum m_o(h_o + \frac{v_o^2}{2} + gz_o) + W$$

The exergy balance equation [31]:

$$\sum \left(1 - \frac{T_o}{T}
ight) Q + \sum \psi_i = \sum \psi_o + I_{des}$$

The rate of irreversibility production [31]:

$$I_{des} = (\sum m_i \psi_i - \sum m_o \psi_o) + \sum \left(1 - \frac{T_o}{T}
ight) Q - W$$

To calculate the exergy for single-phase flows such as water or steam flow [2]:

$$\psi = (h - h_o) - T_o(s - s_o)$$

The transferred exergy by heat:

$$\psi_Q = Q \left(1 - \frac{T_o}{T}\right)$$

The energy efficiency (η_1) and exergy efficiency (η_2) are calculated using the following equations:

$$\eta_1 = \frac{P_{gen,net}}{Q_f} = \frac{P_{gen,net}}{m_f \times LHV}$$

$$\eta_2 = \frac{P_{gen,net}}{Ex_f} = \frac{P_{gen,net}}{m_f \times LHV \times \xi}$$

Where ξ depends on the chemical composition of consumption fuel and it is expressed in numerous experimental values in different references. For usual gaseous fuels, one may write [32]:

--- 354 ---
Table 1: Thermodynamic properties of points in the cycle (According to Table 2: Operating conditions of the power plant [29])

<table>
<thead>
<tr>
<th>Operating conditions</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power produced</td>
<td>200</td>
<td>MW</td>
</tr>
<tr>
<td>Internal Power consumption</td>
<td>14</td>
<td>MW</td>
</tr>
<tr>
<td>Volumetric flow rate of fuel (Natural gas)</td>
<td>54*10^3</td>
<td>Nm³/h</td>
</tr>
<tr>
<td>Volumetric flow rate of inlet air to burners</td>
<td>9.6*10^3</td>
<td>Nm³/h</td>
</tr>
<tr>
<td>Heat rate</td>
<td>10448.6</td>
<td>kW</td>
</tr>
<tr>
<td>Rate of CO₂ production</td>
<td>0.514</td>
<td>kg/Kwh</td>
</tr>
<tr>
<td>Steam flow rate, main line</td>
<td>186</td>
<td>kg/s</td>
</tr>
<tr>
<td>Steam pressure, main line</td>
<td>130</td>
<td>bar</td>
</tr>
<tr>
<td>Steam temperature, main line and reheat</td>
<td>540</td>
<td>°C</td>
</tr>
<tr>
<td>Water temperature, to boiler</td>
<td>247</td>
<td>°C</td>
</tr>
<tr>
<td>Stack gas temperature</td>
<td>160</td>
<td>°C</td>
</tr>
<tr>
<td>Number of induced and forced draft fans</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Number of burners</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Number of LPHs-HPHs</td>
<td>4-3</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 2: The Q-T diagram of FW heating process in the cycle

where subscripts p and s refer to primary and secondary paths in a heat exchanger. For FWs, the FW line is primary line and the steam line is secondary line.

Heat rate (HR) of a Rankine cycle is defined as the amount of required heat to produced work. It is inversely proportional to thermal efficiency [34]:

\[HR_{RC} = \frac{n_{LHV}}{P_{gen,net}} \times 3600 \]

5. Results and Discussion

In order to investigate the effect of the presence of FWs (low pressure and high pressure), the cycle of the power plant is simulated in Cycle Tempo software [35]. For optimal results, technical information and instructions in the technical archive of the power plant were used [17]. Simulation results were compared with the heat balance parameters and manufacturer's performance diagrams, which showed good agreement between results [9].

In Fig. 2, the Q-T diagram of the pre-heating process of FW before entering the boiler is depicted, showing how FW temperature changes. In the process of heat exchange between FW and steam, only heating in the liquid phase is performed on the FW path. However, on the steam side, given that

\[\xi_{CH4} = 1.06 \]

\[\xi_{H2} = 0.985 \]

For fuel with the formula C_{x}H_{y}, the following experimental equation is used to calculate \(\xi \) [32]:

\[\xi = 1.033 + 0.0169 \frac{X}{Y} - 0.0698 \frac{X}{Y} \]

The functional and universal exergy efficiencies (\(\eta_{f,x} \) and \(\eta_{u,x} \)) of heat exchangers are calculated using following equations [33]:

\[\eta_{f,x} = \frac{E_{x,p,i} - E_{x,p,j}}{E_{x,j} - E_{x,p,j}} \]

\[\eta_{u,x} = \frac{\sum E_{x,i} + \sum I}{\sum E_{x,i}} \]

--- 355 ---
the steam enters in superheated form and exits as a compressed liquid, three processes occur: desuperheating, condensing and subcooling. In all heaters, there is a condensing section, but the presence of the other two (desuperheating and subcooling) depends on the temperature difference between water and steam as well as the design conditions of the heater. In general, when the heater inlet temperature is higher, the desuperheater and subcooler become more necessary [3]. In Fig. 2 it is seen that the total transferred heat to FW is about 134 MW.

In Table 3, some thermodynamic characteristics of FW and steam paths are observed for all heaters. The table includes inlet and exit temperature of the FW, temperature and pressure of steam, pressure drop of FW, exchanged heat, difference in the temperature of the FW in the heater and the presence or absence of a desuperheater and subcooler (also called steam cooler and drain cooler). A steam cooler is added to this type of heat exchanger to minimize the temperature difference between the two fluids in the heat exchange process [3] thereby reducing the thermal stress and exergy losses [32]. A drain cooler is added to overcool the outlet condensate of the heater and maximize the use of energy from the condensed steam. This reduces the probability of reaching a two-phase mode in the pipeline and the pump (drip pump) while lowering the heat of the outlet condensate. The output condensate from each heater usually enters the heater at lower pressure in cascade mode (LPH-3 and 4, HPH-6 and 7), or enters the drip pump (LPH-2 2) or a lower pressure reservoir (LPH-1 and HPH-5).

Fig. 3 shows the T-S diagram of the power plant cycle. In this diagram, the condensation processes for steam in each heater are clearly visible. Additionally, the diagram presents the pressure of input steam entering each heater.

To evaluate the overall effect of each group of pre-heaters (LP and HP) while removing them from the service in the software, the results are presented in Table 4. The following parameters are studied: energy and exergy efficiencies (η_1, η_2), fuel mass flow rate (\dot{m}_{fuel}), water temperature difference in cooling tower (ΔT_{c-T}), FW temperature to the economizer (T_{Econ}) and equivalent production power (P). These parameters were calculated for 4 modes, and the heaters in service are LPHs, HPHs, LPHs+HPHs and without heaters. As it is shown, if all of the heaters are out of service, η_1 and η_2 become 32.02% and 31.25%, which is 3.19% and 3.1% lower, respectively, than is case with all heaters working. It is worth noting that in some cases, because of repairs to the power plant or leakage from the heaters (internal or external), this equipment should be removed from service. Deciding whether to use a unit in this situation or to shut it down and perform repairs requires sufficient information about unit efficiency and power generation priority (networks need) among other parameters.

One issue that may arise for heaters is a change in FW temperature rise. This change (usually a reduction) may occur due to increased heat transfer resistance owing to: (i) the formation of sediment on the heat transfer surfaces, (ii) steam valve breakdown (wear and tear of internal parts) or (iii) reduction of unit power production [21]. In addition, these pipes can be blocked from both sides if there is an internal leak in the tubes inside the heater and there is only a small number of tubes. The heater will continue to operate (for a short time), but the heat exchange rate will deteriorate and eventually the temperature rise of the FW will slow down [21]. In Fig. 4, changes in the exergy efficiency of the LP heaters are observed against the change in temperature rise in these heaters.

Increasing the ΔT of the heater results in increased functional exergy efficiency ($\eta_{2,f}$). In contrast, increasing ΔT results in reducing universal exergy efficiency ($\eta_{2,u}$). This contradiction is due to the difference in the definition of these efficiencies (Equations 10 and 11). As shown in Fig. 4, the trend of $\eta_{2,f}$ is increasing and has no peak point. Higher ΔT results in higher $\eta_{2,f}$. On the other hand, $\eta_{2,u}$ trend is increasing and almost all of the charts have a minimum point. Fig. 5 depicts variations of $\eta_{2,f}$ and $\eta_{2,u}$ vs. ΔT of HP heaters. The general trend of these parameters in HP heaters is similar to that of LP heaters. The only difference is for HPH-5, in which, unlike other heaters, $\eta_{2,u}$ does not have a minimum point, and higher ΔT results in lower $\eta_{2,u}$.

In order to compare the exergy efficiencies of all heaters with each other, Figs. 6 and 7 show $\eta_{2,u}$ and $\eta_{2,f}$ for all heaters. As shown in Fig. 6, in a particular ΔT, there is a significant difference between the universal exergy efficiencies of heaters. Examining this chart, it can be concluded that lowering FW temperature results in lower universal exergy efficiency. Also, lowering FW temperature results in higher variation of heater exergy efficiency. From Fig. 6 it is observed that as ΔT approaches zero, the universal exergy efficiency approaches 100%.

Fig. 7 shows the variations of functional exergy efficiency ($\eta_{2,f}$) vs. ΔT of all heaters. This diagram is similar to Fig. 6 because for a particular ΔT, lowering the temperature of the FW in the heater results in lowering the functional exergy efficiency. This can also be seen in Equations 10 and 11. The difference between this diagram and Fig. 6 is that at $\Delta T = 0$, $\eta_{2,f}$ approaches 0% (whilst $\eta_{2,u}$ approaches 100%).
Figure 4: Variation of exergy efficiencies ($\eta_{2,f}$ and $\eta_{2,u}$) of LPHs vs. the variation of ΔT_{LPH}.
In the absence of a preconfigured path, the condensate of heater groups, a path to the condenser is also predicted. The most significant change occurs for LPH-1. This absorbed for all heaters. The most significant change occurs for HPH-7 and the least change occurs for LPH-1. As can be seen, increasing ΔT results in increased energy and exergy efficiencies. In the case where all heaters are fully in service, η_1 and η_2 are 35.21% and 34.35%. Comparing the diagrams in Fig. 8, it can be concluded that the variations of both efficiencies are similar. In addition, examining each of these graphs, it can be seen that LPH-2 has the greatest effect on increasing the cycle efficiencies. In this regard, LPH-1 is ranked second.

One of the beneficial effects of FWHs in the Rankine cycle is the consumption of a portion of the steam passing through the turbine. In this way, part of the steam entering the turbine will not enter the condenser. Although this will reduce the steam flow rate through the turbine in the final stages, the final result is beneficial. The condensation of steam in the condenser has two negative effects: first, the equipment needs to cool the cooling water (resulting in internal electricity consumption); secondly, the energy transferred to the cooling tower in the form of heat is released to the atmosphere and reduces the efficiency of the cycle [3]. In this section, with the assumption of constant mass flow rate of cooling water in the cooling tower and the assumption of the production of 200 MW, the variation in ΔT_{CT} and ΔT of each heater is shown in Fig. 9. This is one of the most important problems in some thermal power plants [5]. The rates shown in Fig. 9 are exactly the same as graphs of Fig. 8. Therefore LPH-2 results in the highest increase in ΔT_{CT}. The minimum effect is obtained from HPH-5. The optimal heater (or heaters) are therefore selected for feed water heating repowering [10–14]. The goal is to have the least negative effect on power generation and minimize impact on cooling the tower cooling capacity.

Fig. 10 shows the effect of ΔT of the HP heaters (individually) on the production power. To calculate the production power in Fig. 10, it is assumed that the fuel flow and hence the heat absorbed by the FW in the boiler is constant. Reducing ΔT of the heater reduces the production power while the fuel flow rate is constant. Clearly, in a particular leakage flow rate, the leakage effect of HPHs is greater than that of LPHs, because the temperature of the outlet condensate from the HPH-5 is higher than LPH-2. This point can be clearly seen in Fig. 13. This figure shows that if there is a leakage of 20 kg/s from the pathway of the HPHs, the temperature difference between the cooling tower increases by about 0.18°C. For the same amount of leakage from the path to the LPHs, temperature difference becomes 0.09°C, which is much less than the temperature difference for HPHs.

In Fig. 13, the effect of mass flow rate of leakage of the heat exchangers (all three conditions) on ΔT_{CT} is observed. As already stated, ΔT_{CT} value is obtained assuming that the mass flow rate of the coolant water is constant. Clearly, in a particular leakage flow rate, the leakage effect of HPHs is greater than that of LPHs, because the temperature of the outlet condensate from the HPH-5 is higher than LPH-2. This point can be clearly seen in Fig. 13. This figure shows that if there is a leakage of 20 kg/s from the pathway of the HPHs, the temperature difference between the cooling tower increases by about 0.18°C. For the same amount of leakage from the path to the LPHs, temperature difference becomes 0.09°C, which is much less than the temperature difference for HPHs.

Given the fact that the leakage of condensate to the condenser increases the losses in the cooling tower and reduces cycle efficiency, assuming that the power is constant, there is an increase in fuel consumption. Higher fuel consumption results in a higher rate of emissions of environmental pollutants. Fig. 14 shows the rate of increase of CO$_2$ production compared to the leakage rate of the heaters. Changes in Fig. 14 are similar to Fig. 13, which means that HPHs are more effective than LPHs. According to Fig. 14, if there is a leak of 20 kg/s from the pathway of the HPHs, the production of CO$_2$ will increase by 7200 ton/year.
6. Conclusions

In the present paper, the performance of FWHs of a steam power plant with a capacity of 200 MW was evaluated. The main objective of this study was to investigate the behavior of these heaters in various scenarios. The behavior of heaters and parameters affecting their performance were studied. In order to repower old steam units, eliminating FWHs is effective for feed water heating repowering and full repowering [10]. In this study, all the FWHs were studied separately and collectively (LP, HP, and both groups) in different scenarios. Some of the results are exclusive to the studied power plant. These results depend on the dimensions and the thermodynamic parameters of heaters. Other results can be generalized to similar power plants. The effect of leakage of condensates (LP, HP, and both) on the condenser was also studied in detail.

General results of this paper include in particular:

1. For all heaters, higher exchanged heat (i.e., ΔT_{FW} increases) results in higher universal exergy efficiency and lower functional exergy efficiencies (in accordance with Equations 10 and 11).

2. HPH-7 and LPH-1 have the highest and lowest exergy efficiencies, which in normal operating conditions are 94.14% and 71.31%, respectively.

3. HPH-6 and LPH-1 have the highest and lowest rates of exergy destruction, which under normal operating conditions are 1039 and 397 kW, respectively.

4. Although the highest heat exchanges occur in HPH-6 and LPH-4 (31.3 and 21.73 MW), the highest positive effect on energy efficiency is due to LPH-2 and LPH-1 (0.81% and 0.61%/0%).

5. In the event of a leak in condensate of heaters, the most negative effect is incurred by HP heaters. With a 20 kg/s leakage in each of these paths, the results are:
 - Reductions in energy efficiency of the cycle due to leakage in the LP and HP paths are 0.091% and 0.374%.
 - Reductions in produced power due to leakage in the LP and HP paths are 1.2 and 3.9 MW.
 - Annualized increases in CO$_2$ production due to leakage in the LP and HP paths are ca. 2300 and 7850 tons.
 - Leakage in the LP and HP paths results in increases in ΔT_{CT} of 0.90 and 0.18°C.
 - Leakage in the LP and HP paths results in increases in internal consumption of 457 and 127 kW.

6. LPH-2 and LPH-1 have the greatest effect on ΔT_{CT} (0.36 and 0.28°C).

7. Installing LP and HP heaters boosts energy efficiency by 2.53% and 0.82%.

References

URL http://amar.tavanir.org.ir

Nomenclature

Abbreviations

GC Gland condenser
GTCC Gas turbine combined cycle
HPT High-pressure heater
HPC High-pressure cycle
HPP High-pressure pre-heater
IPPC Intermediate-pressure power plant
IPU Intermediate-pressure unit
LE Low-pressure extraction
LPP Low-pressure pre-heater
MSPP Montazeri steam power plant
Pre Preheater
RC Rankine cycle
BFP Boiler feed pump
SC Simple cycle
SPP Steam power plant
ST Steam turbine
CWP Cooling water pump
CCPP Combined cycle power plant
DE Deaerator
Econ Economizer
Evap Evaporator
FW Feed water
FWH Feed water pre-heater
GSC Gland steam cooler
Greek Symbols

η₁ First low efficiency
η₂ Second low efficiency
η₂,ₐ Functional exergy efficiency
η₂,ₓ Universal exergy efficiency
ξ Exergy of fuels
ψ Specific exergy, kW/kg
Parameters

ΔT Temperature difference, °C
P Pressure, bar
Q Heat, kW
R World constant for gases
s Specific entropy, kJ/kgK
T Temperature, °C
v Velocity, m/s
W Work, kW
e Specific energy, kJ/kg
e EX Flow exergy
g The gravity acceleration, m/s²
h Specific enthalpy, kJ/kg
HR Heat rate, kJ/kg
I Destroyed exergy, kW
ṁ Mass flow rate, kg/s
<table>
<thead>
<tr>
<th>heater</th>
<th>$T_{FW, \text{inlet}}$</th>
<th>$T_{FW, \text{outlet}}$</th>
<th>ΔT_{FW}, \degreeC</th>
<th>ΔP_{FW}, bar</th>
<th>Q, MW</th>
<th>ΔT_{FW}, \degreeC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPH-1</td>
<td>48.2</td>
<td>68.6</td>
<td>66.9</td>
<td>0.337</td>
<td>1.5</td>
<td>10.2</td>
</tr>
<tr>
<td>LPH-2</td>
<td>72.71</td>
<td>102.2</td>
<td>129.5</td>
<td>1.25</td>
<td>2</td>
<td>16.02</td>
</tr>
<tr>
<td>LPH-3</td>
<td>102.7</td>
<td>126.1</td>
<td>238.2</td>
<td>5.63</td>
<td>1.5</td>
<td>✓</td>
</tr>
<tr>
<td>LPH-4</td>
<td>126.1</td>
<td>159.9</td>
<td>332.7</td>
<td>5.98</td>
<td>1.5</td>
<td>✓</td>
</tr>
<tr>
<td>Deae</td>
<td>159.9</td>
<td>165.5</td>
<td>432.9</td>
<td>7.04</td>
<td>0</td>
<td>✓</td>
</tr>
<tr>
<td>HPH-5</td>
<td>168.2</td>
<td>183.2</td>
<td>343.5</td>
<td>11.29</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>HPH-6</td>
<td>183.2</td>
<td>223.3</td>
<td>351.5</td>
<td>25.3</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>HPH-7</td>
<td>223.3</td>
<td>244.9</td>
<td>396.5</td>
<td>36.74</td>
<td>2</td>
<td>✓</td>
</tr>
</tbody>
</table>
Table 4: Effect of FWHs on power plant performance

<table>
<thead>
<tr>
<th>Working Heaters</th>
<th>η_1</th>
<th>η_2</th>
<th>m_{fuel}, kg/s</th>
<th>P, MW</th>
<th>ΔT_{CT}, $^\circ$C</th>
<th>T_{ECON}, $^\circ$C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPHs</td>
<td>34.39</td>
<td>33.55</td>
<td>12</td>
<td>194.5</td>
<td>10.46</td>
<td>168</td>
</tr>
<tr>
<td>HPHs</td>
<td>32.68</td>
<td>31.88</td>
<td>12.63</td>
<td>186</td>
<td>11.38</td>
<td>159</td>
</tr>
<tr>
<td>LPHs+HPHs</td>
<td>35.21</td>
<td>34.35</td>
<td>11.7</td>
<td>200</td>
<td>10</td>
<td>244.6</td>
</tr>
<tr>
<td>None</td>
<td>32.02</td>
<td>31.25</td>
<td>12.91</td>
<td>181.5</td>
<td>11.78</td>
<td>83</td>
</tr>
</tbody>
</table>

Figure 5: Variation of exergy efficiencies ($\eta_{2,f}$ and $\eta_{2,u}$) of HPHs vs. variation of ΔT_{HPHs}

Figure 6: Comparison of $\eta_{2,u}$ for all heaters

Figure 7: Comparison of $\eta_{2,f}$ for all heaters
Figure 8: Variation of energy and exergy efficiencies of the cycle vs. variation of ∆T_{Heaters}

Figure 9: Variation of ∆T_{CT} vs. variation of ∆T_{Heaters}

Figure 10: Variation of produced power vs. variation of ∆T_{Heaters}

Figure 11: Variation of transmitted heat vs. variation of ∆T_{Heaters}

Figure 12: Variation of efficiencies vs. variation of mass flow rate of leakages (all groups)
Figure 13: Variation of ΔT_{CT} vs. variation of mass flow rate of leakages (all groups)

Figure 14: Variation of the rate of CO$_2$ production vs. variation of mass flow rate of leakages (all groups)